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Abstract. We study algebraic isomonodromic deformations of flat log-
arithmic connections on the Riemann sphere with n ≥ 4 poles, for arbi-
trary rank. We introduce a natural property of algebraizability for the
germ of universal deformation of such a connection. We relate this prop-
erty to a peculiarity of the corresponding monodromy representation:
to yield a finite braid group orbit on the appropriate character variety.
Under reasonable assumptions on the deformed connection, we may ac-
tually establish an equivalence between both properties. We apply this
result in the rank two case to relate finite branching and algebraicity for
solutions of Garnier systems.

For general rank, a byproduct of this work is a tool to produce regular
flat meromorphic connections on vector bundles over projective varieties
of high dimension. Logarithmic flat connections and Fundamental group
representations
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1. Introduction

In this paper, we study isomonodromic deformations of logarithmic con-
nections with n ≥ 4 poles on the Riemann sphere. From Malgrange [Mal83],
it is known that every such deformation parametrized by a simply connected
basis is obtained by pull-back of a universal isomonodromic deformation.

We introduce a notion of algebraizability for the germ of universal isomon-
odromic deformation of a given connection ∇. Roughly speaking, this germ
is considered algebraizable if we can recover it by restriction of a flat log-
arithmic connection on a (necessarily algebraic, by GAGA) vector bundle
over a projective manifold X to a suitable family of rational curves in X.

Our main result relates this algebraizability to a dynamical property for
the monodromy representation of the deformed connection ∇.

Theorem A (Main theorem). Let ∇ be a logarithmic connection on a rank
m holomorphic vector bundle over P1 with n poles x1, . . . , xn, n ≥ 4.

Let ρ : π1(P1 \ {x1, . . . , xn}, x0)→ GLm(C) be its monodromy representa-
tion. Suppose the germs of ∇ at the poles are mild transversal models and
ρ is semisimple or m = 2. Then the following are equivalent.

(1) The conjugacy class [ρ] has a finite orbit under the pure mapping
class group PMCGn(P1).

(2) The germ of universal isomonodromic deformation of ∇ is algebraiz-
able.

The notion of mild transversal model is introduced in section 3. Actually,
if ∇ is constructed from ρ via Deligne’s canonical extension, the mildness
assumption of Theorem A is automatically satisfied.

If we work up to birational gauge transformations, we can drop this as-
sumption.

Corollary B. Let ∇ be a logarithmic connection on a rank m holomorphic
vector bundle over P1 with n poles x1, . . . , xn, n ≥ 4.

Let ρ : π1(P1 \ {x1, . . . , xn}, x0)→ GLm(C) be its monodromy representa-
tion. Suppose ρ is semisimple or m = 2. Then the following are equivalent.

(1) The conjugacy class [ρ] has a finite orbit under the pure mapping
class group PMCGn(P1).

(2) Up to a birational gauge transformation of ∇, the germ of universal
isomonodromic deformation of ∇ is algebraizable.

The introduction of technicalities concerning mild tranversal models is
essential in the proof of Theorem C below, which is a generalization of the
global result of Iwasaki [Iwa08] concerning algebraic solutions of Painlevé
VI equation.

Theorem C. Let (λi) be a solution of a Garnier system governing the
isomonodromic deformation of a trace free logarithmic connection ∇ on O⊕2

P1

with no apparent pole. The following are equivalent.

(1) The multivalued functions λi are algebraic functions.
(2) The functions λi have finitely many branches.
(3) The conjugacy class [ρ] of the monodromy representation of ∇ has

finite orbit under MCGnP1.
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For n ≥ 4 punctures, there exist irreducible rank m representations that
yield finite orbits, so that the above statements are not vacuous; see sec-
tion 2.6.3.

We now want to comment on the possible continuations of this work, after
we will explain the structure of the paper.

The most interesting part of Theorem A is the implication (1) ⇒ (2),
it allows to construct flat connections on vector bundles over projective
ruled varieties from finite orbits. We already have an example that testifies
that, in general, the obtained connection is not too simple, see [Cou14].
The determination of conjugacy classes of representations that have finite
orbits for a fixed rank m and number of punctures n seems to be a good
strategy to exhibit interesting flat connections. For (m,n) = (2, 4) this
study was initiated by Dubrovin-Mazzocco [DM00], continued by Iwasaki
[Iwa02], Boalch [Boa06], Cantat-Loray [CL09] and completed by Lisovyy-
Tykhyy [LT14].

For (m,n) = (2, 4) this study was initiated by Dubrovin-Mazzocco [DM00],
systematized by Cantat-Loray [CL09] and completed by Lisovyy-Tykhyy
[LT14]. Thanks to the efforts of many people, such as Hitchin [Hit95],
Dubrovin-Mazzocco [DM00], Doran [Dor01], Andreev-Kitaev [AK02], Boalch
[Boa10], the algebraic solutions of the corresponding Garnier system (Painlevé
VI) are essentially all known.

For m = 2, n > 4, restricting to the case of Zariski dense representations
in SL2(C), Diarra [Dia13] has determined all the finite orbits that can be
obtained via the pullback technique used in [Dor01] and [AK02]. They are
finite and quite few. One may also find algebraic Garnier solutions directly
from algebraic Painlevé VI solutions, as illustrated in [Gir]. It might be
interesting to determine the other finite orbits, say for n = 5. Then, a
challenging program would be to exhibit the corresponding algebraic Garnier
solutions.

We should also point out that we have an important structure theorem
for Zariski dense rank two representations of quasi-projective fundamental
groups given by Corlette and Simpson in [CS08]. For rank two reducible
representations, this theorem is well complemented by [BCAM13, Theorem
5.1]. Both results are fruitfully used in the theory of foliations, see [CP14]
and [LTP14].

To the authors knowledge, in the general quasi-projective case, there is
no known similar result for higher rank. In this regard, investigation of the
finite orbits occurring in Theorem A with m > 2 could be an interesting
testing ground for possible generalization of [CS08]. In section 5, we give
some information on the fields of definitions of the projective representations
that would occur in these examples.

Other interesting questions concern the generalization of Theorem A for
isomonodromic deformations of logarithmic connections over other Riemann
surfaces. Also, in the side of representations, an important part of our
construction is not restricted to representations with value in GLm(C) and
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we may ask if we could exploit it in a context of isomonodromic deformations
of connections on more general principal bundles.

The paper is organized as follows. The proof of Theorem A is based on a
form of Riemann-Hilbert correspondence. In section 2, from a finite orbit,
we build a representation of the fundamental group of the complement of
a hypersurface in a projective ruled variety. In section 3, we prove the ap-
propriate Riemann-Hilbert correspondence. We combine these results in the
beginning of section 4 and obtain Theorem A. In section 4.4, we introduce
the relation between isomonodromic deformations and Garnier systems and
conclude by the proof of Theorem C. The paper is concluded by section 5, a
discussion on fields of definitions of projective representations of semi-direct
products, whose interest has been evoked above. A technical point on Gar-
nier systems is treated in the Appendix.

Acknowledgements. The first topological ideas about this work were
found whilst the author worked at IMPA, there we wish to thank A. Lins
Neto, J.V. Pereira and P. Sad for useful discussions. The main part of this
work was accomplished in the Mathematics department of the University
of Pisa. We acknowledge M. Salvetti and F. Callegaro for discussions on
hyperplane arrangements and lifting issues. The author was hosted in Pisa
by M. Abate and J. Raissy with a postdoc fellowship in the framework
of Italian FIRB project Geometria Differenziale e Teoria Geometrica delle
Funzioni. We are grateful for this hospitality and this funding, as for an
additional contribution of J. Raissy through some helpful proof reading. We
thank both referees for their relevant suggestions and remarks. Last but not
least, the author would like to thank F. Loray for introduction to the topic of
isomonodromic deformations and for numerous enlightening conversations.

2. A topological construction from braid group orbits

2.1. Braid group and Mapping class group. We recall here some known
results about mapping class groups, braid groups and their relations. The
main reference is [Bir69].

For any connected real manifold M , let Homeo(M) denote the group of
self homeomorphisms of M . Let b ∈M be a base point. For h ∈ Homeo(M),
we have an isomorphism h∗ : π1(M, b)→ π1(M,h(b)), for any choice of path
γ in M from b to h(b), we have an isomorphism γ∗ : π1(M,h(b)) ' π1(M, b),
and γ∗ ◦ h∗ is an element of Aut (π1(M, b)), the group of automorphisms
of π1(M, b). If we change the path γ, the class of γ∗ ◦ h∗ in the group
Out (π1(M, b)) of outer automorphisms does not change. We get a morphism

MCG(M)→ Out (π1(M, b)) .

Here MCG(M) is the mapping class group of M , that is the group of isotopy
classes in Homeo(M). In our work we are especially interested in the n
times punctured Riemann sphere M = P1(C) \ {x1, . . . , xn} and the n!-
index subgroup of MCG(M) which fixes each of these punctures. We denote
this subgroup by PMCGn(P1), the letter P standing for pure mapping class
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group, in opposition to the full mapping class group

MCGn(P1) := MCG(P1(C) \ {x1, . . . , xn}).
In this special setting, for n > 2, the map

PMCGn(P1)→ Out
(
π1(P1(C) \ {x1, . . . , xn})

)
can be recovered from an action of the pure braid group on n strands on the
sphere. This will be useful for our considerations and we explain it in the
next paragraphs.

Let F0,nP1 := {(y1, . . . , yn) ∈ (P1)n|i 6= j ⇒ yi 6= yj}. The pure braid
group on n strands on the sphere is π1(F0,nP1).

For n > 2, consider

F3,n−3P1 := {(t1, . . . , tn−3, 0, 1,∞) ∈ F0,nP1}.
Normalizing configurations, we get a homeomorphism

PSL2(C) × F3,n−3P1 ' F0,nP1

[ A , (t1, . . . , tn ) ] → (A · t1, . . . , A · tn)

We have a natural projection

pn+1 : F0,n+1P1 → F0,nP1, (y0, . . . , yn) 7→ (y1, . . . , yn).

This projection pn+1 has a continuous section. Namely, we define such a
section by

σn(A · (t1, · · · , tn−3, 0, 1,∞)) = A · (τ(t), t1, · · · , tn−3, 0, 1,∞),

with τ(t) = 2 +
n−3∑
i=1

<(ti)
2,

where <(ti) stands for the real part of the complex number ti.
We denote sn(y) the first coordinate of σn(y). In this way we have

σn(y) = (sn(y), y1, . . . , yn), y ∈ F0,nP1.

Fix a base point x = (x1, . . . , xn) ∈ F0,nP1 and let x0 = sn(x). The group
π1(P1 \ {x1, . . . , xn}, x0) will be ubiquitous in this paper. For brevity of
notation we define, once and for all,

Λn := π1

(
P1 \ {x1, . . . , xn}, x0

)
.

The section σn induces a morphism

σn∗ : π1(F0,nP1, x)→ π1(F0,n+1P1, σn(x)).

For MCGn+1(P1) = MCG(P1\{x0, . . . , xn}), [Bir69] gives two other maps{
d∗ : π1(F0,n+1P1)→ PMCGn+1(P1), [Th.1 p.216] and

µn+1 : PMCGn+1(P1)→ Aut(Λn), [sec.3].

The action of PMCGn+1 through µn+1 is simply by composition on the
level of representative loops: (g · α)(t) := g(α(t)). The map d∗ can be de-
scribed as follows. For α ∈ π1(F0,nP1, x), let (αi(t))i : [0, 1] → F0,nP1 ⊂(
P1
)n

be a representative loop. There exists a continuous family ht ∈
Homeo(P1) such that ht(xi) = αi(t). The class [h1] of h1 in MCGn(P1)
depends only on α and we have d∗α = [h1] ∈ MCGn(P1). We see that,
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with the group law induced by composition of maps on MCGn, d∗ is an
antimorphism. However, µn+1 is a genuine morphism.

It is readily checked that, for n > 2, we have the following commutative
diagram.

π1(F0,nP1, x)

d∗
��

σn∗// π1(F0,n+1P1, σn(x))

d∗
��

PMCGn(P1)

��

PMCGn+1(P1)oo

µn+1

��
Out (Λn) Aut (Λn)oo

This is the announced relation between braid group and mapping class group
actions.

At this point, we should notice a few more facts. The kernel of d∗ :
π1(F0,nP1, x)→ PMCGn(P1) is contained in the center of π1(F0,nP1), [Bir69,
Cor.1.2 p.218]. The center of π1(F0,nP1) is is isomorphic to Z/2Z ' π1(PSL2(C)),
see [GG04, Prop.7 p.311]. One checks directly that the image of π1(PSL2(C))
via PSL2(C)× F3,n−3P1 ' F0,nP1 is contained in this kernel.

Also, we have an exact sequence [Bir69, Th.1 p.216]

π1(F3,n−3P1)
d∗→ PMCGn(P1)→ PMCG3(P1),

which asserts surjectivity of d∗ : π1(F0,nP1)→ PMCGn(P1), because PMCG3(P1)
is the trivial group. Finally, d∗ induces an anti-isomorphism

π1(F3,n−3P1) ' PMCGn(P1), n > 2.

The map ψ : π1(F0,nP1, x)→ Aut (Λn) induced by the above diagram will
be of major importance in the next section. Occasionally, we will denote
αβ := ψ(β) · α; for α ∈ Λn, β ∈ π1(F0,nP1, x).

2.2. Fundamental groups of locally trivial fiber bundles. We discuss
fundamental groups of certain locally trivial fiber bundles. Our treatment
is inspired by [Shi], to which we refer for introduction to braid monodromy.

Theorem 2.2.1 (Zariski-Van Kampen). Let p : E → B be a topologically
locally trivial fiber bundle. Suppose E is path-connected and we have a con-
tinuous section s : B → E, p ◦ s = idB. denote Eb := p−1(b), for a base
point b ∈ B. Then, the fundamental group of E is a semidirect product:

π1 (E, s(b)) ' π1(Eb, s(b)) oφ π1(B, b);

More precisely, the right-hand side is the product π1(Eb, s(b)) × π1(B, b)
endowed with multiplication law

(n1, h1) ? (n2, h2) = (n1(φ(h1) · n2), h1h2) ,

for a morphism φ : π1(B, b)→ Aut(π1(Fb, s(b))) characterized by the follow-
ing property:

for any (α, β) ∈ π1(Eb, s(b))× π1(B, b),

φ(α) · β = s∗(α)βs∗(α)−1 in π1(E, s(b)).
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Proof. We have a long homotopy exact sequence.

· · · → π2(E, s(b))
p∗→ π2(B, b)→ π1(Eb, s(b))

i∗→ π1(E, s(b))
p∗→ π1(B, b)→ {1}

The section s induces a section s∗ of π2(E, s(b))
p∗→ π2(B, b), by exactness

we deduce the short exact sequence

{1} → π1(Eb, s(b))
i∗→ π1(E, s(b))

p∗→ π1(B, b)→ {1}
which splits by s∗, yielding the announced semidirect product structure. �

We are specially interested with the following fiber bundles.

Definition 2.2.2. For n > 2, let

Tn := {(y, z) ∈ F0,nP1 × P1|yi 6= z, i = 1, . . . , n}.
The natural map Tn → F0,nP1 is called the tautological fiber bundle on F0,nP1.
We endow this bundle with the section sn introduced in section 2.1.

For any subgroup H of π1(F0,nP1, x), choose a covering fH : (BH , bH)→
(F0,nP1, x) with fH∗π1(BH , bH) = H. We define (EH , sH) as the pullback
of (Tn, sn) by fH .

Proposition 2.2.3. Let f : (B, b)→ (F0,nP1, x) be a continuous map, with
B path connected. By pullback, we have a commutative diagram

f∗Tn

��

// Tn

��
B

f //

sf

CC

F0,nP1

sn

[[

We have a semidirect product decomposition

π1 (f∗Tn, sf (b)) ' Λn oϕ π1(B, b)

with structure map
ϕ = ι ◦ ψ ◦ f∗

where

• f∗ : π1(B, b)→ π1(F0,nP1, x) is the map induced by f ,
• ψ : π1(F0,nP1, x)→ Aut (Λn) is the antimorphism introduced in sec-

tion 2.1.
• ι is the involution g 7→ g−1.

Proof. In the proof we denote E := f∗Tn, s := sf and Eb the fiber of b in
E.

First, Tn and E are topologically locally trivial fiber bundles. The local
triviality of Tn is an exercise which reduces to finding a continuous family
(hτ )τ∈D of homemorphisms of the closed disk D with hτ (τ) = 0. In the same
way, we can prove that E \ s(B)→ B is also locally trivial.

By Theorem 2.2.1, we have a semidirect product structure

π1 (E, s(b)) ' π1(Eb, s(b)) oφ π1(B, b);

let us characterize the structure map φ. Take loops α : [0, 1] → (B, b), β :
[0, 1] → (Eb, s(b)). Through local trivializations of E \ s(B) over α we can
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define a continuous family (ht)t∈[0,1] of homemorphisms ht : Eb \ s(b)
'−→

Eα(t) \ s(B), with h0 = idEb. In terms of the projections (y, z) to the factors

of the product B × P1, ht takes the form ht : (b, z) 7→ (α(t), gt(z)) for a
homeomorphism

gt : P1 \ {x0, . . . , xn}
'−→ P1 \ ∪n+1

i=1 {pri ◦ σn ◦ f ◦ α(t)},

where pri : F0,n+1P1 ↪→
(
P1
)n+1 → P1 is the projection to the i-th fac-

tor. Hence, the resulting element [g1] ∈ PMCGn+1(P1) is d∗σn∗f∗α and the
corresponding element of Aut(π1(P1 \ {x1, . . . , xn}, x0) is ψ(f∗α).

The continuous family βt(s) := ht(β(s)), t ∈ [0, 1] is such that βt is a
loop in Eα(t) with base point s(α(t)) and β0 = β. Thanks to this, we easily

see that the loop β1 in Eb represents s∗(α)−1βs∗(α) in π1(E, s(b)), thus it
represents φ(α)−1 · β in π1(Eb, b). We just proved φ(α)−1 · β = h1∗β.

We now identify (Eb, b) with (P1 \ {x1, . . . , xn}, x0) via the projection z.

This induces an identification z∗ : π1(Eb, b)
'−→ π1(P1 \ {x1, . . . , xn}, x0) =

Λn. Thanks to this, we also have a semidirect product structure

π1 (E, s(b)) ' Λn oϕ π1(B, b),

and the identity φ(α)−1 · β = h1∗β reads ϕ(α)−1 · z∗β = g1∗ · z∗β, which
implies, by our previous description of g1∗, ϕ(α)−1 = ψ(f∗α). We have the
announced group isomorphism. �

Corollary 2.2.4. Let fH : (BH , bH)→ (F0,nP1, x) and EH be as in Defini-
tion 2.2.2.

We have a semidirect product decomposition

π1 (EH , sH(b)) ' Λn oζ H

with structure map ζ = ι ◦ ψ|H , where ι is the involution g 7→ g−1.

Proof. We identify π1(BH , bH) with H via fH∗. �

We want to use Corollary 2.2.4 to give informations on linear representa-
tions of π1(EH). Yet, the first informations we get are about their projec-
tivizations.

2.3. Projective representations. With the notation of section 2.2, we
will study a group morphism ρ : π1(EH , sH(bH)) → G from the properties
of its restriction ρb : Λn → G to the first factor in the semidirect product
structure of Corollary 2.2.4.

We denote P the projection map P : GLm(k) → GLm(k)/k∗. Take a
representation ρ : π1(EH , sH(bH)) → GLm(k), for k an algebraically closed
field. Suppose ρb is irreducible, by Schur’s lemma the image of

Pρb : Λn → PGLm(k)

has trivial centralizer in PGLm(k) and the following applies, showing the
projectivization of ρ is characterized by ρb in a quite effective manner.

Lemma 2.3.1. Consider the following split exact sequence of groups.

{1} // N
i // Γ // Q

s
||

// {1}
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Let G be a group. Suppose we have a morphism ρ : i(N) → G, such that
Im(ρ) has trivial centralizer in G. Then ρ extends to at most one morphism
ρ̂ : Γ→ G.

Moreover, the existence of such an extension is equivalent to the condition

(1) ∃(gβ) ∈ GQ such that ρ(β−1αβ) = g−1
β ρ(α)gβ ; ∀(α, β) ∈ i(N)× s(Q).

In addition, if such a family (gβ) exists, it is unique.

Proof. We must have, for any (α, β) ∈ i(N)× s(Q),

ρ(β−1αβ) = ρ̂(β)−1ρ(α)ρ̂(β).

For i = 1, 2, let gβ,i statisfy

ρ(β−1αβ) = g−1
β,iρ(α)gβ,i ; ∀α ∈ i(N).

Then gβ,1g
−1
β,2 centralizes Im(ρ) and must be trivial.

Thus if (gβ) exists, it is unique and gβ1β2 = gβ1gβ2. Then one checks that
the assignment αβ 7→ ρ(α)gβ defines the required extension ρ̂. �

In the next section, we will see how condition (1) appears naturally in
our study.

2.4. Braid group action on the set of representations. In section 2.1
we have described an antimorphism

ψ : π1(F0,nP1, (x1, . . . , xn))→ Aut (Λn) .

It induces an action (β, ρ) 7→ β · ρ of π1(F0,nP1, (x1, . . . , xn)) on the set of

morphisms Hom (Λn, G), for any group G. Explicitly: (β · ρ)(α) := ρ(αβ).
This action commutes with the action of G on Hom (Λn, G) by inner auto-
morphisms and we have an induced action (β, [ρ]) 7→ [β ·ρ]; where [ρ] denotes
the class in Hom(Λn, G)/G of the element ρ ∈ Hom(Λn, G).

In this regard, in the case where Γ = π1(f∗Tn, sf (b)) as in Proposition
2.2.3, condition (1) of Lemma 2.3.1 means that f∗π1(B, b) < π1(F0,nP1, x)
is contained in the stabilizer Stab[ρ] of [ρ] ∈ Hom(Λn, G)/G, independently
of any assumption on G or ρ. We have straightforwardly three corollaries of
this observation and Lemma 2.3.1.

Corollary 2.4.1. Consider a morphism ρ : Λn → PGLm(k), for k a field.
Suppose Im(ρ) has trivial centralizer in PGLm(k) and H < π1(F0,nP1, x)

stabilizes [ρ] ∈ Hom (Λn,PGLm(k)) /PGLm(k).
Then ρ is the restriction ρ̂bH of a unique representation

ρ̂ : π1(EH , sH(bH))→ PGLm(k).

�

Corollary 2.4.2. Let k be an algebraically closed field and ρ : Λn → GLm(k)
be a group morphism.

Suppose ρ is irreducible and H < π1(F0,nP1, x) stabilizes

[ρ] ∈ Hom (Λn,GLm(k)) /GLm(k).

Then Pρ, the projectivization of ρ, is the restriction P̂ρb of a unique pro-
jective representation

P̂ρ : π1(EH , sH(bH))→ PGLm(k).
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�

Corollary 2.4.3. Let f : (B, b)→ (F0,nP1, x) be a continuous map, with B
path connected. Consider a group morphism

ρ : π1(f∗Tn, sf (b)) ' Λn oϕ π1(B, b)→ G.

If f∗ : π1(B, b) → π1(F0,nP1, x) has finite index image and ρb : Λn → G is
the restriction of ρ to Λn, then the element

[ρb] ∈ Hom(Λn, G)/G

has a finite orbit under the action of π1(F0,nP1, x). �

2.5. Lifting issues. A natural question after stating Corollary 2.4.2 is the
following.

Question 1. Does the extension P̂ρ constructed via Corollary 2.4.2 lift to
a linear extension of ρ ?

Recall one says a representation µ : Γ → PGLm(k) lifts to GLm(k) if we
can find a map µ̃ : Γ → GLm(k) such that µ = Pµ̃. If we can find a lift µ̃
with image in SLm(k), we say that µ lifts to SLm(k).

Lemma 2.5.1. Let r : NoQ→ PGLm(k) be a group morphism, for a given
field k.

Suppose the restrictions of r to both factors, rN and rQ, lift to GLm(k)
and Im(rN ) has trivial centralizer in PGLm(k). Suppose a lift r̃N of rN
satisfies

(2) ∃(gβ) ∈ (GLm(k))Q | ∀(α, β) ∈ N ×Q, r̃N (β−1αβ) = g−1
β r̃N (α)gβ.

Then r lifts to GLm(k). If rN and rQ lift to SLm(k), then so does r.

Proof. Let r̃N , r̃Q be lifts for rN and rQ, with values in SLm(k) if possible.

The relations of condition (2) projectivize to rN (β−1αβ) = Pg−1
β rN (α)Pgβ.

If we replace Pgβ by rQ(β), these equations still hold, because r is a mor-
phism. By Lemma 2.3.1, we get Pgβ = rQ(β) and there exists a family (λβ)
of non zero scalars such that gβ = λβ r̃Q(β), in particular

r̃N (β−1αβ) = r̃Q(β)−1r̃N (α)r̃Q(β).

and the assignment αβ 7→ r̃N (α)r̃Q(β) defines the desired lift of r. �

Corollary 2.5.2. Let ρ ∈ Hom (Λn,GLm(k)), k an algebraically closed field.
Suppose ρ is irreducible and H < π1(F0,nP1, x) stabilizes

[ρ] ∈ Hom (Λn,GLm(k)) /GLm(k).

Consider P̂ρ : π1(EH , sH(bH)) → PGLm(k), the extension of Pρ obtained
in Corollary 2.4.2. Let g : (B, b) → (BH , bH) be a continuous map, with B
path connected and let f = fH ◦ g. Let

P̂ ρ|B : π1(f∗Tn, sf (b)) ' Λn oϕ π1(B, b)→ PGLm(k)

be the pullback of P̂ ρ by the natural map f∗Tn → EH .

Suppose, the restriction rπ1(B,b) of P̂ρ|B to the second factor π1(B, b) lifts

to GLm(k).
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Then P̂ρ|B lifts to GLm(k) as an extension of ρ. If ρ takes values in

SLm(k), and rπ1(B,b) lifts to SLm(k), then P̂ρ|B lifts to SLm(k) as an exten-
sion of ρ.

Proof. Take r = P̂ρ|B, r̃N = ρ in Lemma 2.5.1. The condition (2) is

ensured by H stabilizing [ρ]. �

Corollary 2.5.3. In the case n = 4 of Corollary 2.4.2, ρ is in fact the
restriction ρ̂b of a linear representation ρ̂ : π1(EH , sH(bH))→ GLm(k). If ρ
takes values in SLm(k), so can be chosen ρ̂.

Proof. We will use Corollary 2.5.2 for B = BH , g = idB. We want to
lift the restriction rπ1(B,b) = rH to SLm(k). We have the product struc-

ture π1(F0,4P1) ' π1(PSL2(C)) × π1(F3,1P1) = Z/2Z × F2, where F` is the
free group of rank `. We know the action of π1(PSL2(C)) on Hom(π1(P1 \
{x1, . . . , xn}),GLm(k)) is trivial, because the section sn is PSL2(C)-equivariant.

Thus if H = Stab[ρ], then H = Z/2Z × F` for some ` and the repre-
sentation rH is trivial on the factor Z/2Z. For this reason, it is enough to
lift the restriction of rH to the factor F`, which is easy because F` is free.
Then if we take for H a subgroup of Stab[ρ], the restriction of the lift we
just constructed for Stab[ρ] gives the required lift of rH . �

Remark 2.5.4. The linear extension of ρ obtained in Corollary 2.5.2 is almost
never unique, because we can tensor any lift by a scalar representation of
π1(B, b) to obtain a new lift.

Corollary 2.5.2 shows Question 1 reduces to determining if a certain pro-
jective representation of a subgroup H of the pure braid group lifts to a
linear representation.

One can try to solve this issue using cohomological arguments. This
takes the following form. First, projective and linear representations of H
correspond to flat bundles on BH , this means elements of the cohomology
sets H1(BH ,PGLm(k)) and H1(BH ,GLm(k)) respectively.

As it is the application we have in mind, we restrict to the case k = C.
We have a commutative diagram of locally constant sheaves, the lines of
which are exact sequences.

0 // Z/mZ //

i
��

SLm(C) //

i
��

PGLm(C) // 0

0 // C∗ // GLm(C) // PGLm(C) // 0

This yields a commutative diagram of cohomology sets, with exact sequences
as lines.

H1(BH , SLm(C))

��

// H1(BH ,PGLm(C))
d1 // H2(BH ,Z/mZ)

i∗
��

H1(BH ,GLm(C)) // H1(BH ,PGLm(C))
d2 // H2(BH ,C∗)

We see that a projective representation ρ ∈ H1(BH ,PGLm(C)) comes
from a linear (resp. special linear) representation if and only if d2ρ = 0
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(resp. d1ρ = 0). As the diagram commutes, d2ρ ∈ i∗H
2(BH ,Z/mZ), in

particular it is an m-torsion element of H2(BH ,C∗).
Hence, if H2(BH ,C∗) has trivial m-torsion then ρ lifts to a linear repre-

sentation. Yet, this general approach is not sharp enough for our purposes.
For example if n > 4, H2(F0,nP1,Z) has positive rank, see [OT92]. As a
consequence, by universal coefficient theorem, its tensor product with C∗ is
a subgroup of H2(F0,nP1,C∗) which contains torsion elements of any order.

For this reason, we use another strategy: we will lift the representation

P̂ρ after restriction to a covering of a Zariski open set of BH . We are mainly
interested in finite coverings BH → F0,nP1. Their underlying spaces are
Zariski open sets of projective manifolds.

Thus, the following statement is powerful enough for our purposes. It is
a known result in étale cohomology. We have proposed a new proof for it in
[Cou15].

Theorem 2.5.5. Let X be an irreducible projective complex variety and D
an algebraic hypersurface in X. Let ? be a smooth point of X \D. For any
representation ρ : π1(X \D, ?)→ PSLm(C), there exists a hypersurface Dρ

with D ⊂ Dρ, ? 6∈ Dρ and a generically finite morphism fρ : (Yρ, ?ρ)→ (X, ?)
of projective varieties with basepoints, étale in the neighborhood of ?ρ, such
that Yρ is smooth and the pullback

f∗ρρ : π1(Yρ \ f−1
ρ (Dρ), ?ρ)→ PSLm(C)

lifts to SLm(C). �

2.6. Conclusion.

2.6.1. General rank. Let us first analyze the relations between the orbit of
a representation and the ones of its subrepresentations.

Lemma 2.6.1. Fix k a field. Let ρ = ⊕i∈I ρi be a direct sum of irreducible
representations

ρi : Λn → GL(Wi).

For subspaces Wi of km. Then, for any pure braid β ∈ π1(F0,nP1, x), β ·ρ =
⊕i∈I β · ρi. In particular, if β stabilizes every [ρi], it stabilizes [ρ].

Moreover, the intersection ∩iStab[ρi] is a finite index subgroup of Stab[ρ].
In particular [ρ] has finite orbit under π1(F0,nP1, x) if and only if, for every
i ∈ I, [ρi] has finite orbit under π1(F0,nP1, x).

Proof. If αj ∈ Λn = π1

(
P1 \ {x1, . . . , xn}, x0

)
is a simple loop around xj,

then αβj = cαjc
−1, for a certain c ∈ Λn, and (β · ρ)(αj) = ρ(c)ρ(αj)ρ(c)−1.

For any vector v ∈Wi, we have ρ(c)ρ(αj)ρ(c)−1 ·v = ρi(c)ρi(αj)ρi(c)
−1 ·v =

(β · ρi)(αj)v. Using the fact that the elements (αj)j generate Λn yields the
first assertion of the lemma.

For any element β ∈ Stab[ρ], there exists a matrix gβ ∈ GLm(k) such
that, for any α ∈ Λn, (β · ρ)(α)gβ = gβρ(α). We see that, for any i ∈ I,
gβWi is an irreducible subspace of (β ·ρ), in particular [ρi] = [β ·ρk] for some
k ∈ I. Let J ⊂ I be such that (ρj)j∈J is a system of representatives for the
classes ([ρi])i∈I . We define a morphism Stab[ρ]→ Perm(J), β 7→ σβ by the
relation [β ·ρj ] = [ρσβ(j)]. Its kernel is a finite index subgroup of Stab[ρ] that

stabilizes every of the classes [ρi]. �
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We turn to the main result of this section. We now consider F0,nP1 as
a subspace of the projective variety (P1)n. The expression “Zariski open”
refers to open sets in the induced topology. Recall we have defined the
tautological bundle Tn over F0,nP1 as a subset of F0,nP1 × P1 — see Def-
inition 2.2.2. Denote z : Tn → P1 the map induced by projection to
the second factor of this ambient space. Also keep in mind our notation
Λn := π1

(
P1 \ {x1, . . . , xn}, x0

)
.

Theorem 2.6.2. Let ρ : Λn → GLm(C) be a semisimple representation.
Suppose that [ρ] ∈ Hom (Λn,GLm(C)) /GLm(C) has finite orbit under the
pure braid group π1(F0,nP1, x).

Then there exists a generically finite morphism f : (U, b)→ (F0,nP1, x) of
smooth quasiprojective varieties, étale in the neighborhood of b, such that if

• pf : E → U is the pullback by f of the bundle Tn → F0,nP1,

• z̃ is the composition E → Tn
z→ P1,

• z1 : Eb
'−→ P1\{x1, . . . , xn} is the isomorphism between Eb := p−1

f (b)

and P1 \ {x1, . . . , xn} induced by z̃,
• c = z1

−1(x0),

then there exists a representation ρ̂ : π1(E, c) → GLm(C) such that ρz1∗ =
ρ̂i∗, where i : Eb → E is the inclusion map. Moreover, ρ̂ has the same
stable subspaces as ρ, and if certain irreducible factors of ρ have trivial
determinants, so can be chosen the corresponding ones for ρ̂.

Proof. In the proof, we will identify Λn with the fundamental groups of
certain fibers of pullbacks of Tn; these identifications are always the ones
induced by the projection z : Tn → P1. For semidirect product structures
that appear below, see section 2.2.

Let ρ = ⊕i∈Iρi be the decomposition of ρ in irreducible factors, with ρi =
ρ|Wi

, Cm = ⊕iWi. Let Hi < π1(F0,nP1, x) be the stabilizer of [ρi]. By

Lemma 2.6.1, H = ∩i∈IHi is a finite index subgroup of π1(F0,nP1, x). Thus,
the covering (BH , bH)→ (F0,nP1, x) with fundamental group H is finite. For
this reason BH embeds as the complement of an hypersurface in a projective
variety.

Consider the bundle EH → BH introduced in Definition 2.2.2. By Corol-
lary 2.4.1, for any i ∈ I, the projectivization of ρi extends to a projective
representation

P̂ ρi : π1(EH , sH(b)) ' Λn oϕ π1(BH , b)→ PGL(Wi).

Let riH : π1(BH , bH)→ PGL(Wi) be the restriction of P̂ρi to the second fac-
tor. By successive applications of Theorem 2.5.5, there exist a Zariski open
neighborhood V of bH in BH and a generically finite morphism χ : (U, b)→
(V, bH), étale in the neighborhood of b, such that if g is the composition

g : U
χ→ V ↪→ BH , the pullback riπ1(U,b) of riH by g∗ lifts to SL(Wi); for any

i ∈ I.
Let f = fH ◦ g and E → U be the pullback of the bundle EH → BH by g;

that is E = f∗Tn. Denote g̃ : E → EH the natural bundle map. Corollary
2.5.2 says that the existence of a lifting for riπ1(U,b) implies that the pullback
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P̂ ρi|U = g̃∗P̂ ρi lifts to an extension ρ̂i of ρi

ρ̂i : π1 (E, sf (b)) ' Λn oϕ π1(U, b)→ GL(Wi);

with values in SL(Wi) if Im(ρi) ⊂ SL(Wi). We can then define an exten-
sion of ρ as ρ̂ := ⊕iρ̂i. The map f is the one announced in the statement
of the theorem. �

2.6.2. Rank two representations. In view of our application to Garnier sys-
tems, we give a specific enhanced version of Theorem 2.6.2 for rank two
representations.

Theorem 2.6.3. Suppose that [ρ] ∈ Hom (Λn,GL2(C)) /GL2(C) has finite
orbit under the pure braid group π1(F0,nP1, x).

Then there exists a generically finite morphism f : (U, b)→ (F0,nP1, x) of
smooth quasiprojective varieties, étale in the neighborhood of b, such that if

• pf : E → U is the pullback by f of the bundle Tn → F0,nP1,

• z̃ is the composition E → Tn
z→ P1,

• z1 : Eb
'−→ P1\{x1, . . . , xn} is the isomorphism between Eb := p−1

f (b)

and P1 \ {x1, . . . , xn} induced by z̃,
• c = z1

−1(x0),

then there exists a representation ρ̂ : π1(E, c) → GL2(C) such that ρz1∗ =
ρ̂i∗, where i : Eb → E is the inclusion map.

If ρ takes values in SL2(C) so can be chosen ρ̂.

Proof. For irreducible and abelian non scalar representations, this is direct
application of Theorem 2.6.2 and Lemma 2.6.1.

Any scalar representation ρ : Λn → C∗ is fixed by the action of π1(F0,nP1, x),
because the loops around the punctures (xi) generate the fundamental group
Λn. We can thus extend any such ρ to ρ̂ : Λn o π1(F0,nP1, x) → C∗ by
the formula αβ 7→ ρ(α), the map f can be taken to be the identity map of
F0,nP1.

We now treat the reducible non abelian case. After conjugation and tensor
product with a scalar representation, we may suppose ρ takes its values in
the subgroup Aff(C) := {

[
λ τ
0 1

]
, λ ∈ C∗, τ ∈ C} of GL2(C). In this case, we

easily see that for any β ∈ H = Stab[ρ] there exists a matrix Aβ ∈ Aff(C)
satisfying (β · ρ)Aβ = Aβρ.

Of course we will interpret Im(ρ) < Aff(C) as a group of transformations
of the affine complex line C. By non abelianity, this group does not fix
any point in C and is not a group of translations. This means that we
have two non trivial elements ρ(αi), i = 1, 2 of Im(ρ) fixing two distinct
points in C. The element Aβ is thus characterized as the unique element of
Aff(C) sending the fixed point of ρ(αi) to the fixed point of (β · ρ)(αi) for
i = 1, 2. From uniqueness of Aβ, we see that β 7→ Aβ, H → SL2(C) is a
homomorphism. We then extend ρ to ΛnoζH by the formula αβ 7→ ρ(α)Aβ.
The map f is the map fH : (BH , bH)→ (F0,nP1, x). �

2.6.3. Non vacuity. Just to show our construction is not empty, we give
two basic examples of finite orbits. First, notice that any representation
Λn → GLm(C) with finite image yields a finite orbit. For any m > 0,
the two generator group Sm+1 has an irreducible representation of rank m.
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Hence for any n ≥ 3, m > 0, we have a finite orbit arising from an irreducible
representation.

One of the referees made the following interesting remark. As the total
space Tn of the tautological bundle over F0,nP1 is nothing but F0,n+1P1, for
any ρ : Λn o π1(F0,nP1) ' π1(F0,n+1P1) → GLm(C), the induced represen-
tation of Λn yields a size 1 orbit under π1(F0,nP1).

3. Riemann-Hilbert correspondence

For an introduction to flat connections, we refer to [IY08, sec. 17].
Let X be a complex manifold. We denote OX ,MX the sheaves of holomor-
phic and meromorphic functions on X, respectively. A rank m meromorphic
connection over X is map of C-vector space sheaves ∇ : V → MX ⊗V,
such that V is the sheaf of sections of a rank m holomorphic vector bundle
V over X and for any x ∈ X, f ∈ OX,x, s ∈ Vx, ∇(f · s) = f ·∇(s) +ds⊗f .

Thus, the data of V is contained in the one of ∇. However, in need of
explicit reference to the vector bundle, we shall use the notation (V,∇) and
say that ∇ is a connection on V or that V is endowed with the connection
∇.

In [Del70], for a complex manifold X containing a normal crossing hyper-
surface D, Deligne realizes any represention ρ : π1(X \D)→ GLm(C) as the
monodromy representation of a logarithmic flat connection ∇ρ over X with
polar locus D. He proceeds via a patching procedure, glueing some local
models that satisfy a non resonance property. We want to describe a slight
modification of his construction that allows a wider range of local models
and gives some freedom to prescribe the various transversal types for ∇ρ,
see Definition 3.2.1 below. This will be needed to prove Theorem A.

A complete description of all possible choices of logarithmic extensions
would be interesting. It would certainly involve the topology of the polar
divisor.

3.1. Local theory of logarithmic flat connections.

3.1.1. First results. We must first understand the local behavior of a log-
arithmic connection at smooth points of the polar divisor. The following
allows reduction of this study to a one dimensional base space.

Proposition 3.1.1. Let w1, . . . , wd be the coordinates of Cd. Let U be
neighborhood of 0 ∈ Cd. Let ∇ be a flat logarithmic connection on O⊕mU , with
polar divisor w1 = 0. Then up to reduction of U , U is a product Dr×V for a
disk Dr = {w1 ∈ C, |w1| < r} and after a holomorphic gauge transformation,
∇ is the pullback of a connection ∇0 on O⊕mDr by the projection w 7→ w1.

Proof. This is a special case of [YT76, Theorem 5]. �

On (C, 0) we use the standard coordinate of C, which we denote w. We
denote <(λ) the real part of a complex number λ.
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Definition 3.1.2. We say that a logarithmic connection Y 7→ dY−A(w)dww Y

on O⊕m(C,0), is reduced if A has a block diagonal shape

A(w) =


B1(w) 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 Br(w)


such that the blocks Bi(w) =

∑
k≥0B

i
kw

k satisfy the following conditions.

(1) The blocks Bi(w) are upper triangular and the matrices Γi := Bi
0

are in Jordan form,
(2) if i 6= j, for any eigenvalue λ of Γi and any eigenvalue µ of Γj ,

λ− µ 6∈ Z.
(3) For any pair of eingenvalues λ, µ of Γi, λ− µ ∈ Z.
(4) The eigenvalues of Γi are in decreasing order on the diagonal: <(Γil,l)

is a (not necessarily strictly) decreasing sequence.
(5) The (u, v) entry of Bi is monomial, of the form cwk; with k =

Γiu,u − Γiv,v and c ∈ C.

Notice condition (5) of the definition implies wΛiBi
kw
−Λi = Bi

kw
k, where

Λi is the diagonal part of Γi. If Λ is the diagonal part of A(w) =
∑

k Akw
k,

this yields wΛAkw
−Λ = Akw

k. We also remark that A(w) is a polynomial
and the expression A(1) makes sense.

Theorem 3.1.3 (Poincaré-Dulac-Levelt). Any germ of logarithmic connec-
tion on O⊕m(C,0) is holomorphically gauge equivalent to a reduced connection.

Proof. See [IY08, Sec. 16C − 16D]. �

For a real number a, bac denotes the biggest integer q with a ≥ q.

Proposition 3.1.4. Let ∇ : Y 7→ dY − A(w)dww Y be a reduced logarithmic

connection on O⊕m(C,0). Let Λ be the diagonal part of A. Let L be the diagonal

matrix defined by Lu,u = b<(Λu,u)c. The meromorphic gauge transform

Y = wLZ transforms this connection into a connection ∇0 : Z 7→ dZ−C dw
w Z

with constant C given by C = A(1)− L. In particular, any eigenvalue λ of
C satisfies <(λ) ∈ [0, 1).

Proof. This computation is already mentioned in [YT76, §4]. If Y is a
horizontal section of ∇ and Z = w−LY we have

dZ = d(w−LY ) = (−L+ w−LA(w)wL)
dw

w
Z.

If Λ is the diagonal part of A(w), the block diagonal structure of A(w) allows
to see w−LA(w)wL = w−ΛA(w)wΛ. We mentioned above that A(w) =∑

k Akw
k can be rewritten A(w) =

∑
k w

ΛAkw
−Λ. Hence w−ΛA(w)wΛ =∑

k Ak = A(1). �

Definition 3.1.5. We define two spaces of connections on O⊕m(C,0).
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• The space of nonresonant Euler connections:

Eul0 := ∪m{Z 7→ dZ − Cdw
w
Z,C ∈ Matm(C), λ, µ ∈ S(C)⇒ λ− µ 6∈ Z∗},

where S(C) is the spectrum of the matrix C.
• The space Red of reduced logarithmic connections.

Proposition 3.1.4 defines a map

eul : Red −→ Eul0

∇ 7−→ ∇0

The effect of eul on connection matrices shall be denoted A 7→ ε(A).

Notice ε(A) has the same block diagonal structure as A, with triangular
blocks Ci = Bi(1)− Li; Li diagonal with Liu,u = b<(Λiu,u)c.

3.1.2. Local automorphisms. We want to investigate the automorphisms of
a reduced connection in relation with the ones of its corresponding Euler
connection.

Proposition 3.1.6. Let ∇0 : Z 7→ dZ −C dw
w Z be an element of Eul0. Any

bimeromorphic automorphism φ of O⊕m(C,0) that preserves ∇0 (φ∗∇0 = ∇0)

has the form Z 7→ g · Z, for a constant matrix g.

Proof. This is inspired by [Bri04, Lemme 3]. Such an automorphism has
the form Z 7→ G(w) ·Z, with G =

∑
k=rGkw

k a meromorphic function with
values in GLm(C). the relation φ∗∇0 = ∇0 reads

[G,C]dw + wdG = 0

or ∑
k=r

([Gk, C] + kGk)w
k = 0

Each term of the left hand side must be zero and we have, for k ≥ r, GkC =
(C − kId)Gk. Such identities imply that, for k ≥ r, if Gk 6= 0, C and
(C − kId) have a common eigenvalue λ = µ− k. Nonresonance of C shows
Gk = 0 for k 6= 0. Hence, G = G0 is constant. �

We immediately derive the following, which is contained in [KR04, Lemma
1].

Corollary 3.1.7. Let ∇ : Y 7→ dY − A(w)dww Y be a reduced logarithmic

connection on O⊕m(C,0). Let Λ be the diagonal part of A, then a bimeromorphic

automorphism Y 7→ G(w) · Y of O⊕m(C,0) preserves ∇ if and only if G(w) =

wΛgw−Λ for g a constant matrix satisfying [g, ε(A)] = 0. �

Suppose A is as in Definition 3.1.2. Any matrix g satisfying [g, ε(A)] = 0
must fix the characteristic spaces of ε(A). We thus have the same block
diagonal structure for g, ε(A) and A. Hence, a matrix g satisfies [g, ε(A)] =
0, if and only if g has the same block diagonal shape as A

g =


g1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 gr
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and, for every i, [gi, ε(Bi)] = 0.
The holomorphicity of the matrix G(w) = wΛgw−Λ is then tantamount

to
(?) : gu,v = 0 for every (u, v) such that Λv,v − Λu,u ∈ N∗.

For instance, if g is upper triangular then G(w) is holomorphic with holo-
morphic inverse.

3.2. Transversal types.

Proposition/Definition 3.2.1. Let X be a complex manifold and D be an
analytic hypersurface in X. Suppose we have a flat logarithmic connection
∇ on a vector bundle over X, with polar locus D. Let D0 be an irreducible
component of D. Let γ : D → X be an embedding of the unit disk in X,
transverse to D, such that γ(0) is a smooth point of D0. Then the gauge
isomorphism class of the germ of γ∗∇ at 0 is independent of γ.

This isomorphism class is called the transversal type of ∇ on D0.

Proof. Let p be a smooth point of D0, Proposition 3.1.1 allows to find co-
ordinates (w1, . . . , wd) : U → D × V, w1 ∈ D, (w2, . . . , wd) ∈ V centered at
p and such that ∇|U is, up to gauge isomorphism, the pullback by w1 of a

logarithmic connection ∇̃ on D in reduced form; ∇̃ : Z 7→ dZ −A(w1)dw1
w1
Z.

By connectedness of D0, it is enough to prove the result for curves γ with
γ(0) ∈ U .

Let γ : D→ X be as prescribed above, with γ(D) ∈ U . By transversality,
we have w1 ◦ γ(t) = tu(t) with u(0) 6= 0 and, up to gauge isomorphism,
the germ of γ∗∇ at t = 0 is Z 7→ dZ − A(tu) dlog(tu)Z. This connection

is gauge isomorphic to Z̃ 7→ dZ̃ − A(t)dtt Z̃. Indeed, let L and C be the
matrices defined from A as in Proposition 3.1.4; it is readily seen that the
meromorphic gauge transform Z̃ = tLu−C(ut)−LZ relates both connections.
Yet, we have to check it is a holomorphic gauge isomorphism. To see this,
rewrite tLu−C(ut)−L = tLu−Ct−Lu−L, and note tLu−Ct−L = tΛu−Ct−Λ is
holomorphic with holomorphic inverse, because u−C is upper triangular, with
the same block diagonal structure as A. �

Definition 3.2.2. Let ∇ : Y 7→ dY −A(w)dww Y be a logarithmic connection

on O⊕m(C,0). We will say that∇ is a mild transversal model if any meromorphic

gauge transform Y 7→ G(w) · Y of O⊕m(C,0) which preserves ∇ is holomorphic.

The gauge isomorphism class of ∇ is then called a mild transversal type.

Notice that if ∇ is a mild transversal model and G(w) preserves ∇, then
so do G−1(w) and G−1(w) must also be holomorphic. Also, a logarithmic
connection on O⊕m(C,0) is a mild transversal model if and only if it defines a

mild transversal type. Thus, we only need to investigate mildness for reduced
logarithmic connections on O⊕m(C,0). The mildness for reduced connections has

been described in the end of section 3.1.1 (Corollary 3.1.7 and subsequent
comments).

Example 3.2.3. Fix n ∈ Z>0, τ ∈ C. The reduced logarithmic connection

Z 7→ dZ −
[
n/2+τ 0

0 −n/2+τ

]
dw
w Z on O⊕2

(C,0) does not define a mild transversal

type. Indeed, the gauge transform given by G(w) =
[

0 wn

w−n 0

]
preserves ∇.
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We now present two families of such mild transversal models. Exam-
ple 3.2.3 shows that their rank two specializations cover all rank two mild
tranversal types.

Lemma 3.2.4. Any element of Eul0 is a mild transversal model.

Proof. This is a trivial consequence of Proposition 3.1.6. �

Maybe a more original example is the following.

Lemma 3.2.5. Let ∇ : Y 7→ dY − A(w)dww Y be a logarithmic reduced

connection on O⊕m(C,0). If, for every 0 < u < m, Au,u+1(1) 6= 0 then ∇ is a

mild transversal model.

Proof. Let Λ be the diagonal part of A and C := ε(A). Let g be a constant
matrix of size m satisfying [g, C] = 0. The matrix C is upper triangular,
thus the relation [g, C]u,v = 0 reads

ru,v :
v−1∑
l=1

gu,lCl,v =

m∑
l=u+1

Cu,lgl,v

We can proceed by induction to show g is upper triangular; yielding the
required holomorphy. The induction hypothesis is that, up to column k in-
cluded, g is like a triangular matrix, namely

H(k) : for every j such that 0 < j ≤ k, for every i > j, gi,j = 0.

We have trivially H(0); let us prove H(k) implies H(k+1), provided k < m.
By the induction hypothesis the relation ru,k+1 reduces to

k∑
l=u

gu,lCl,v =
m∑

l=u+1

Cu,lgl,k+1,

In particular, for u > k, the right hand side of this equation is zero. The
family of equations (ru,k+1)m>u>k is a triangular homogeneous linear sys-
tem in the unknowns (gl,k+1)m≥l>k+1. The diagonal coefficient of line u is
Cu,u+1 = Au,u+1(1) and is nonzero by assumption, this proves gl,k+1 = 0 for
m ≥ l > k + 1, which is exactly H(k + 1). The proof is complete. �

Notice, that the assumptions of Lemma 3.2.5 actually imply that A has
only one block B1 in the decomposition of Definition 3.1.2.

If A has several blocks Bi such that the connections ∇i : Zi 7→ dZi −
Bi(w)dww Zi are all mild transversal models, then ∇ = ⊕i∇i is also a mild
transversal model. Indeed, we have seen in section 3.1.2 that any bimero-
morphic automorphism of ∇ has the same block diagonal structure as A.

3.3. Logarithmic Riemann-Hilbert. We start with a local result that
requires no mildness assumption.

Lemma 3.3.1. Let w1, . . . , wd be the standard coordinates of Cd.
Let ∆ = {(w1, . . . , wd) ∈ Cd| |wj | < 2, j = 1, . . . , d}. Let Dj = {wj = 0}
and D = ∪Dj. Denote b = (1, . . . , 1). Let ρ : π1(∆ \ D, b) → GLm(C) be
an antirepresentation. Let t 7→ αj(t) be the loop with coordinate functions
wj(t) = exp(2iπt);wk(t) ≡ 1, j 6= k. Choose logarithmic reduced connections
∇j with monodromy along wj(t) = exp(2iπt) conjugate to ρ(αj).
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Then there exists a logarithmic connection ∇ on O⊕mU with polar locus D,
monodromy equal to ρ and transversal type on Dj given by ∇j.

Proof. We apply Proposition 3.1.4 to each of the reduced logarithmic con-

nections ∇j : Z 7→ dZ−Aj(wi)dwjwj
Z. Let Cj := ε(Aj) and Lj := Aj(1)−Cj.

The matrix w
Lj
j is the identity in restriction to wj = 1, thus we have

exactly (with no conjugation) the same monodromy along wj(t) = exp(2iπt)
for ∇j and eul(∇j), namely exp(2iπCj). By hypothesis, there exists Gj
such that Gjexp(2iπCj)G

−1
j = ρ(αj). Moreover, Cj has real parts of eigen-

values contained in [0, 1). Therefore, by [Bri04, lemme 2], the matrix Rj =

GjCjG
−1
j is the unique matrix with real parts of eigenvalues contained in

[0, 1) and exp(2iπRj) = ρ(αj). Then, by the same lemma and commutativ-
ity of the αj’s, the matrices Rj commute.

Hence, the connection Z 7→ dZ −
∑

j Rj
dwj
wj
Z is flat and its monodromy

is exactly ρ. We transform this connection by Y =
∏
j(Gjw

Lj
j G−1

j )Z to

obtain a new flat logarithmic connection ∇ : Y 7→ dY −
∑
Bj(w)

dwj
wj
Y .

We see that, in restriction to wk = 1, k ≥ 2, this transformation is Y =
(G1w

L1
1 G−1

1 )Z and the restriction of ∇ is Y 7→ dY − G1A1(w1)dw1
w1
G−1

1 Y ,
which is holomorphically equivalent to ∇1. Obviously, we can make the same
reasoning for other polar components; ∇ is the sought connection. �

Definition 3.3.2. Let X be a complex manifold, let D ⊂ X be a normal
crossing hypersurface. Let ρ : π1(X \D, b)→ GLm(C) be a representation.
Let ∇ be a flat rank m connection over X \D with monodromy ρ. Let Di

be an irreducible component of D and let ∇i be a rank m connection over
the germ of disk (D, 0). Let γ : (D, 0) → X be a germ of curve cutting Di

transversely at a smooth point of D. We say that ∇i is compatible with ρ if
∇i and γ∗∇ have the same monodromy representation up to conjugation.

Theorem 3.3.3. Let X be a complex manifold, let D ⊂ X be a normal
crossing hypersurface and let

ρ : π1(X \D, b)→ GLm(C)

be an antirepresentation. Denote (Di)i∈I the irreducible components of D
and choose, for every i ∈ I, a mild transversal model ∇i compatible with ρ.

Then there exists a flat logarithmic connection over X with polar locus
D, transversal type on Di given by ∇i and monodromy representation given
by ρ. This connection is unique up to vector bundle isomorphism.

Proof. We first prove the existence part. We shall give connections on open
subspaces of X which cover X. Then we will show that they glue together in
a logarithmic flat connection over X.

By suspension, we have a holomorphic flat connection ∇0 on U0 = X \D
with monodromy ρ. In the neighborhood Up of any smooth point p of D we
have a flat connection ∇p given by the mild transversal model ∇i, p ∈ Di.
In the neighborhood Up of a non smooth point p ∈ D, Lemma 3.3.1 gives us
a flat connection ∇p with transversal type on Di given by (∇i) and with the
same monodromy as ∇0 on Up ∩ U0.
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For any p ∈ D we have, by coincidence of monodromy, an isomorphism

φ∗0,p∇0|U0∩Up = ∇p|U0∩Up .

For any pair of points q, p ∈ D such that Up ∩Uq 6= ∅, we want to define
isomorphisms φ∗q,p∇q|Uq∩Up = ∇p|U0∩Up. Outside D such an isomorphism

is given by φq,p = φ−1
0,q ◦ φ0,p. Let us show it extends holomorphically to

D ∩ Up ∩ Uq: by regularity φq,p is meromorphic at D, [Del70]. Thus, it
is enough to check its restriction to any curve crossing D transversely at a
general smooth point of D∩Up∩Uq is holomorphic, because the indeterminacy
set of a meromorphic function is a proper analytic subset of its polar locus.
Such a verification is automatic by the mildness of the transversal models
∇i.

We thus have a set of holomorphically invertible gluing maps φα,β defined
on Uα ∩ Uβ, which are compatible in the sense:

φα,γ = φα,β ◦ φβ,γ ; φα,β = φ−1
β,α.

Glueing the vector bundles with connections (∇α) using these maps, we ob-
tain the desired flat logarithmic connection over X.

The uniqueness assertion is obtained as follows: for two connections sat-
isfying the conclusion of the theorem, by coincidence of monodromy, we have
an isomorphism outside D; it extends holomorphically to D by mildness of
the ∇i’s. �

4. Isomonodromic deformations

We introduce some terminology on isomonodromic deformations and then
prove our main result.

4.1. Definition. Let T be a complex manifold and consider a flat rank m
connection ∇ over T × P1 with polar locus given by holomorphic sections
of T × P1 → M , with disjoint images. For t ∈ T , consider the restriction
∇t = ∇|{t}×P1 . For t0 ∈ T , we can obviously see the family (∇t)t∈T as a

deformation of the connection ∇t0 over P1. By flatness of ∇, we see that, for
a given loop α in the complement of the poles of ∇t0 in P1, the monodromy
of ∇t0 over α is the same as the one of ∇t1 if t1 is close enough to t0 in T .

For this reason, we call the family (∇t)t∈T an isomonodromic deformation.
Conversely, we will use this wording exclusively in the above situation, where
the family ∇t is obtained by restriction of a logarithmic connection ∇.

4.2. Universal deformation. Denote

r : (B0, b0) → (F0,nP1, x)
ỹ 7→ (y1, . . . , yn)

the universal cover of F0,nP1. In Definition 2.2.2, we considered the tauto-
logical fiber bundle E0 obtained by restriction of

p : B0 × P1 → B0

(ỹ, z) 7→ ỹ

to the open set (r × idP1)−1(∩i{yi 6= z}).
For ∇ a logarithmic connection on a rank m holomorphic vector bundle

V over P1 with polar locus {x1, . . . , xn}, Malgrange [Mal83] has constructed
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a rank m vector bundle V̂ over B0 × P1 endowed with a logarithmic flat
connection ∇̂ with poles at {yi = z} and such that (V,∇) = i∗(V̂, ∇̂), for

i : P1 → B0 × P1, z 7→ (b0, z). The pair (V̂, ∇̂) is unique up to bundle
isomorphisms. Actually, if ∇ has only mild transversal types, this existence
and uniqueness statement is a direct consequence of Theorem 3.3.3.

This connection ∇̂ has the following universal property.

Proposition 4.2.1. Let B be a simply connected complex manifold and
f : (B, b)→ (F0,n, x). Let

D = ∪i{((y1, . . . , yn), z) ∈
(
P1
)n × P1|yi = z}.

Let f̃ be the lift of f to B0. Let ∇ be a logarithmic connection over P1, with
polar locus {x1, . . . , xn} and define j : P1 → B × P1, z 7→ (b, z).

Let ∇̃ be a flat logarithmic connection over B × P1 with polar locus
(f × idP1)−1D and such that j∗(∇̃) = ∇.

Then ∇̃ is isomorphic to the pullback (f̃ × idP1)∗∇̂.

Proof. See [Mal83]; again if ∇ has only mild transversal types, this is an
easy corollary of Theorem 3.3.3. �

Because of this property, ∇̂ is called the universal isomonodromic defor-
mation of ∇.

4.3. Main result.

Definition 4.3.1. Let ∇ be a logarithmic connection on a rank m holo-
morphic vector bundle over P1. We will say that the germ of universal
isomonodromic deformation of ∇ is algebraizable if there exist:

(1) a birational morphism π : X → Y × P1 between projective complex
manifolds,

(2) a neighborhood ∆ of b0 in B0 and an open holomorphic embedding

ψ : ∆→ Y,

whose image does not intersect the projection in Y of the indeter-
minacy locus of π−1.

(3) a holomorphic embedding Ψ : ∆ × P1 → X such that the following
diagram commutes, q : X → Y being the ruling of X.

∆× P1
Ψ

//

p

��

X

q

��
∆

ψ // Y

(4) a rank m vector bundle Ṽ on X endowed with a meromorphic flat

connection ∇̃,
(5) a connection isomorphism (V̂, ∇̂)|∆×P1 ' Ψ∗(Ṽ, ∇̃),

If the connection ∇̃ of 4. can be chosen logarithmic, we will say that that
the germ of universal isomonodromic deformation of ∇ is logarithmically
algebraizable.

Remark 4.3.2. In this definition we refer to the idea of algebraicity for the
following reasons.
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(1) Any holomorphic vector bundle Ṽ on a projective manifold X comes
from an algebraic one. This means we can find a covering (Ui) of X

by Zariski open sets and holomorphic trivializations of Ṽ relative to
this covering in order to have transition matrices Gi,j with regular
coefficients, i.e. rational functions that have no pole in Ui∩Uj . This
is Proposition 18 of GAGA [Ser56].

(2) If we have a meromorphic connection ∇̃ on Ṽ , in such trivializations,

the entries of the connection matrices of ∇̂ are rational one forms.
Indeed, Gij extends to a global rational function to GLm(C), and
fixing Hi0 ≡ Id, Hi = Gi,i0 we have a global birational trivialization:

Gi,j = HiH
−1
j . In this trivialization, the connection is given by a

global connection matrix and its coefficients must be rational one
forms.

Also observe that, if (Ṽ, ∇̃) is a slm(C)-connection, so can be chosen its
algebraization, by [Ser58, Théorème 3].

We will prove the following slightly more precise version of Theorem A.

Theorem 4.3.3. Let ∇ be a logarithmic connection on a rank m holomor-
phic vector bundle over P1 with n poles x1, . . . , xn, n ≥ 4.

Let ρ : π1(P1 \ {x1, . . . , xn}, x0)→ GLm(C) be its monodromy representa-
tion. Suppose the germs of ∇ at the poles are mild transversal models and
ρ is semisimple or m = 2. Then the following are equivalent.

(1) The conjugacy class [ρ] has a finite orbit under the pure mapping
class group PMCGn(P1).

(2) The germ of universal isomonodromic deformation of ∇ is logarith-
mically algebraizable.

(3) The germ of universal isomonodromic deformation of ∇ is algebraiz-
able.

Proof. We have seen in section 2.1, that [ρ] has finite orbit under PMCGn(P1)
if and only if it has finite orbit under the pure braid group π1(F0,nP1, x).

The assertion 2.⇒ 3. is trivially true.
3.⇒ 1. With the notation of Definition 4.3.1. Let D be the image under π
of the polar locus of ∇̃. Let Dv be the union of the irreducible components
of D that don’t dominate Y . Let A ⊂ Y be the image by q of the exceptional
locus of π : X → Y × P1. It is an analytic subspace of codimension at least
1. Let U := Y \ (A ∪ q(Dv)), the conditions of Definition 4.3.1 ensure that
ψ(∆) is a neighborhood of ψ(b0) contained in U .

Restricting over U we have the commutative diagram below.

∆× P1 Ψ //

p

��

X|U

q

��

π
' // U × P1

q̃

��
∆

ψ // U U

Let Dh = D \Dv, every component Di of Dh defines a finite branched cov-
ering qi : Di → Y , by restriction of q. Every qi is étale in the neighborhood
of ψ(b0), because Ψ lifts to a connection isomorphism in the neighborhood of
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b0. There exists a generically finite surjective map u : Y0 → Y , étale in the
neighborhood of ψ(b0), such that in the pullback bundle Y0 × P1 → Y0, ev-
ery irreducible component of (u× idP1)−1Dh meets every fiber exactly once.
Existence of such a map u is proved in [BHPVdV04, Theorem 18.2 p 56].

By pullback via u, provided ∆ is small enough, we obtain the existence of
a Zariski open subset W of Y0 and an open embedding Ψ0 : ∆×P1 → V ×P1

with a commutative diagram

∆× P1 Ψ0 //

p

��

W × P1

q̃0
��

∆
ψ0 // W

and an algebraic flat meromorphic connection ∇̃0 on W×P1 with polar locus
given by disjoint sections of W × P1 →W such that Ψ∗0∇̃0 is isomorphic to

∇̂|∆.
By algebraicity, the polar sections take the form v 7→ (v, gi(v)) for n fi-

nite maps (gi)i=1,...,n. These functions gi are coordinate functions for a
finite map g : W → F0,nP1. The map g is dominant, because the restric-
tion ∆ → F0,nP1 of the covering map B0 → F0,nP1 factors through it. By
[Deb01, Lemma 4.19], we can deduce that the image of g∗ : π1(V, ψ0(b0))→
π1(F0,nP1, x) is a finite index subgroup of the pure braid group π1(F0,nP1, x).
By Corollary 2.4.3, this allows to conclude that [ρ] has finite orbit under
π1(F0,nP1, x).

1. ⇒ 2. We use Theorem 2.6.2 and Theorem 2.6.3. With the notation of
these latter theorems, let Y be a a projective manifold in which U embeds as
a Zariski open subset. The total space E of f∗Tn embeds naturally in Y ×P1

as the complement of an algebraic subspace A, let D be the codimension 1
part of A. Let π : X → Y × P1 be an embedded desingularization of D,
which is an isomorphism on its image in the neighborhood of {b} × P1 , set
D0 := π−1(D).

We will realize the representation π∗ρ̂ as the monodromy representation
of a well chosen logarithmic flat connection with polar locus in D0. Let
D1, . . . , Dn be the components of D0 that intersect the fiber q−1(b) of the
ruling q : X → Y , in order to have π(Di∩ q−1(b)) = (b, xi) ∈ Y ×P1. In the
product U × P1 the hypersurface π(Di) is simply the graph of the coordinate
function fi of f .

By Theorem 3.3.3, we can define a realizing flat logarithmic connection
∇̃ over X for π∗ρ̂ by assignment of a compatible mild transversal type to
each component of D0. We now describe our choice. For Di, take the mild
transversal type defined by the germ of ∇ at its pole xi; for components that
do not intersect q−1(b), choose any mild transversal model compatible with
π∗ρ̂.

By the uniqueness part of Theorem 3.3.3, the pullback of ∇ by the com-
position X → Y × P1 → P1 is isomorphic to the restriction of ∇̃ to q−1(b).
Let ∆U be a (euclidean) simply connected neighborhood of b in U on which
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f is an analytic isomorphism on its image ∆1 ⊂ F0,nP1. If ∆U is cho-
sen small enough, we have also an isomorphism (∆, b0) → (∆1, x) in-
duced by B0 → F0,nP1 and we obtain, by composition, an isomorphism
ψ : (∆, b0) → (∆U , b), for a euclidean neighborhood ∆U of b in U . The

inverse of ψ is a local lift of f , f̃ : (∆U , b)→ (B0, b0).
We have a commutative diagram.

∆× P1

ψ×id
//

p

��

Ψ:=

**
∆U × P1

q̃

��

X|∆U

q

��

'
π
oo

∆
ψ // ∆U ∆U

Application of Proposition 4.2.1 gives an isomorphism between π∗∇̃|X|∆U and

(ψ × id)∗∇̂|∆×P1. This implies that we have an isomorphism

(V̂, ∇̂)|∆×P1 ' Ψ∗(Ṽ, ∇̃),

for the map Ψ defined in the diagram. We see that every condition of Defi-
nition 4.3.1 for logarithmic algebrization is fulfilled. �

Remark 4.3.4. For 3.⇒ 1. we did not use the semisimplicity assumption.

Remark 4.3.5. In view of the last statement of Theorem 2.6.2, in the proof
of 1.⇒ 2. , if the initial connection ∇ splits as ∇ = ⊕i∈I∇i, the logarithmic
algebraization ∇̃ we construct has the same splitting type ∇̃ = ⊕i∈I∇̃i.

Remark 4.3.6. In [IIS06] Inaba, Iwasaki and Saito show that the mod-
uli spaces of α-stable rank m λ-parabolic connections over P1 correspond-
ing to different positions of the n poles arrange in an algebraic family
π : Mα(λ) → T ′n, where T ′n is a finite étale cover of F0,nP1. Then, they
prove that the Riemann-Hilbert correspondance allows to define a non sin-
gular holomorphic foliation Fα of dimension n on Mα(λ), transverse to the
fibration π, corresponding to isomonodromy.

It seems likely that our Theorem A would allow to show that any α-
stable rank m λ-parabolic connection over P1 whose monodromy represen-
tation yields a finite braid group orbits on the suitable character variety
corresponds to an algebraic leaf of the foliation Fα.

Relaxing the conclusion, we can remove the mildness hypothesis in The-
orem A.

Corollary B. Let ∇ be a logarithmic connection on a rank m holomorphic
vector bundle over P1 with n poles x1, . . . , xn, n ≥ 4.

Let ρ : π1(P1 \ {x1, . . . , xn}, x0)→ GLm(C) be its monodromy representa-
tion. Suppose ρ is semisimple or m = 2. Then the following are equivalent.

(1) The conjugacy class [ρ] has a finite orbit under the pure mapping
class group PMCGn(P1).

(2) Up to a birational gauge transformation of ∇, the germ of universal
isomonodromic deformation of ∇ is algebraizable.
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Proof. Any logarithmic flat connection is birationally gauge equivalent to
a flat logarithmic connection with mild transversal types (e.g. elements of
Eul0). �

4.4. Garnier systems. We now want to explain an application of our main
theorem for rank two connections. It will relate finite braid group orbits and
algebraic solutions of a family of isomonodromy equations, namely Garnier
systems.

4.4.1. Garnier divisor. Let∇ be a logarithmic trace free connection on O⊕2
P1 ,

with n = N+3 non-apparent distinct poles t01, · · · , t0N , 0, 1,∞. Non-apparent
means the monodromy of ∇ around any of these poles is not scalar. Trace
free means that the connection matrix of ∇ is trace free. In the sequel, we
will assume that our base point x for F0,nP1 is x = (t01, . . . , t

0
N , 0, 1,∞). Let

(V̂, ∇̂) be the universal isomonodromic deformation of ∇.
Recall that we denote r : (B0, b0) → (F0,nP1, x) the universal cover of

F0,nP1 and F3,NP1 ⊂ F0,nP1 is the subset of normalized configurations
F3,NP1 = {(t1, . . . , tN , 0, 1,∞) ∈ F0,nP1}. Define C0 := r−1(F3,NP1), re-
calling F0,nP1 ' F3,NP1 × PSL2(C), we see that r|C0

: C0 → F3,NP1 is a
universal covering.

We will take special interest in the restriction (V̂|C0×P1 , ∇̂|C0×P1). Let

Di = (r×idP1)−1({(y, z) ∈ F3,NP1×P1|z = yi}). LetRi ∈ H0(End(V̂|Di), Di)

be the residue of ∇̂|C0×P1 on Di, it is defined locally by the residue of the
connection matrix. The conjugacy class of Ri(p) is independent of p ∈ Di.
Let θi be such that the spectrum of Ri is {θi/2,−θi/2}.

As the pole Di is non-apparent, we have a unique holomorphic section
vθii of P(V̂|Di) that gives the direction of the eigenspace of Ri associated to

θi/2. Define K := {y ∈ C0| V̂|{y}×P1 is not trivializable}. It is an analytic
hypersurface of C0 (Θ-divisor) [Mal83].

For any y ∈ C0\K, we have a unique holomorphic section σy of P(V̂|{y}×P1)

that coincides with vθnn over (y,∞) and is given by a constant map P1 → P1

in any trivialization P(V̂|{y}×P1) ' P1 × P1.
Here, one needs to recall a piece of foliation terminology. The foliation

of the total space of V̂|{y}×P1 given by the horizontal sections of ∇̂|{y}×P1 is

invariant under the natural C∗ action. The quotient foliation on P(V̂|{y}×P1)

is called a Riccati foliation and denoted P(∇̂|{y}×P1). For a holomorphic
foliation F on a smooth complex surface S, for any embedded curve C ⊂ S
not invariant by F , the tangency divisor of C with F is the divisor

∑
p∈C npp

on C, with np := dimCOS,p/Ip where Ip is the ideal < f, v(f) >, for f a local
equation of C at p, and v a local vector field tangent to F , with isolated
singularities.

Notice that Condition 1 below is guaranteed by irreducibility of ∇ or,
using Camacho-Sad formula, by [∀(εi) ∈ {+1,−1}n,

∑
εiθi 6= 0].

Condition 1. The image of σy is not an invariant curve for the foliation
P(∇̂|{y}×P1) on P(V̂|{y}×P1).

Under this condition, we can set the following.
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Definition 4.4.1. We define a divisor Gy = Gy(∇, θn) on {y} × P1 by re-
quiring (Gy+{(y,∞)}) to be the projection of the tangency divisor between

the Riccati foliation P (∇̂|{y}×P1) and the curve σy({y} × P1).

Proposition/Definition 4.4.2. If Condition 1 is fulfilled for general y ∈
C0 \K, there exists a divisor G = G(∇, θn) on (C0 \K)× P1 such that, for
every y ∈ C0 \K satisfying Condition 1, Gy = G|{y}×P1 .

This divisor G is called the Garnier divisor of ∇ with respect to θn.

Proof. By [Mal83], for any point y ∈ C0\K, there exists a neighborhood ∆0

of y in C0 \K and a bundle isomorphism φ : O⊕2
∆0×P1

'−→ V̂|∆0×P1. Hence,

φ∗∇̂|∆0×P1 has the form Z 7→ dZ − (Qdz + Ω)Z, for matrices Q and Ω as
below.

(3)


Q =

N∑
i=1

Ai(t)
z−ti +

AN+1(t)
z +

AN+2(t)
z−1 ;

Ω =
N∑
i=1

Ωi(x, t)dti;

where (ti) are the obvious local coordinates on C0 induced by r.

Define A∞ = −
∑N+2

i=1 Ai. For i = 1, . . . , n, the matrix function t 7→ Ai(t)

gives the residue of φ∗∇̂|∆0×P1 on Di. If φ is well chosen, for any t, the
eigenline of A∞(t) associated with θn/2 is spanned by (1, 0), that is

A∞(t) =
[
θn/2 ∗

0 −θn/2

]
.

With such a choice, if we write Q2,1(z, t) = c(z,t)

z(z−1)
∏N
i=1(z−ti)

, a simple

computation shows that Gy is the degree N divisor on {y}×P1 that coincides
with the zero divisor of z 7→ c(z, t(y)) on ({y} × P1) \ {(y,∞)}. For this
reason, G can be defined by an equation chom(z, ξ, t) = 0 on ∆0 × P1, for
chom a homogeneous polynomial of total degree N in the variables z, ξ and
with coefficients given by holomorphic functions on ∆0. �

At this point it is natural to ask if the Garnier divisor is reduced in
general. We may also ask if it can have contact (or even share a component)
with the polar hypersurface D = ∪iDi. To the author’s knowledge, there is
no information on these questions in the literature.

Remark 4.4.3. In the local computation above, we see that Condition 1 for
y is fulfilled if and only if z 7→ c(z, t(y)) is a non zero polynomial map.
Consequently, it is tantamount to prove that this condition is fulfilled for a
given y or for general y ∈ C0 \K.

Definition 4.4.4. We will say that the Garnier divisor of ∇ with respect
to θn is well defined if Condition 1 is fulfilled by some y ∈ C0 \K.

4.4.2. Algebraicity of the Garnier divisor. Let ∇ be a logarithmic trace free
connection onO⊕2

P1 , with n = N+3 non-apparent distinct poles t01, . . . , t
0
N , 0, 1,∞.

Theorem 4.4.5. If the Garnier divisor G(∇, θn) is well defined and the
germ of universal isomonodromic deformation of ∇ is algebraizable, then
the projection by (C0 \K)×P1 → F0,NP1×P1 of the support of the Garnier
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divisor of ∇ is a union of graphs of algebraic functions from F0,NP1 to P1

i.e. its closure in
(
P1
)N × P1 is an algebraic hypersurface.

Proof. By assumption, ∇ meets the conditions of Definition 4.3.1 and we
use the corresponding notation. Let U be a Zariski neighborhood of ψ(b0) in
Y over which X → Y is isomorphic, via π, to the trivial fibration U ×P1 →
U .

Consider the component Di of the polar locus of π∗∇̃ that passes through
(ψ(b0), xi) ∈ U × P1. Up to a a finite covering of U , we may suppose every
Di is the image of a regular local section fi : U → U × P1 of q. The residue
R of π∗∇̃ on Dn = fn(U) is a regular section of End(Ṽ )|fn(U) → fn(U).
The eigendirection of R corresponding to θn gives a regular section σ0 of
P(Ṽ )|fn(U) and we may apply Lemma 4.4.6 below, with s = fn and x = ψ(b0).

In this way, we obtain a regular extension σ of σ0 defined on U0 × P1, with
U0 a Zariski neighborhood of x in U such that, for every y ∈ U0, P(Ṽ )|{y}×P1

is trivializable.
Let U1 ⊂ U0 × P1 be a Zariski open set such that P(Ṽ )|U1

is algebraically

trivializable and fix a trivialization. Let Z 7→ dZ−
[
β/2 α
−γ −β/2

]
·Z be the local

form of ∇ and let (y, z) 7→ h(y, z) be the local (regular) form of σ. Consider
the splitting Ω1

U0×P1 = DU0⊕DP1 induced by the product structure and denote

pz : Ω1
U0×P1 → DP1 the projection to the rank 1 factor. The intersection of

U1 with the projection of the tangency locus between P(∇̃)|y×P1 and σ|y×P1 is

given by the solutions (y, z) ∈ U1 ⊂ U0×P1 of pz(−dh+α+hβ+h2γ) = 0.
We see that this locus is obtained by restriction to {y} × P1 of an algebraic

divisor G̃ on U0 × P1.
A fundamental observation is that G̃ pulls back to G|(C0∩∆)×P1 via the map

ψ|(C0∩∆) × idP1. Let f : U0 → F0,nP1 be the map with coordinate functions

(fi)i. By Chevalley’s Theorem, the image G0 of supp(G̃) ⊂ U × P1 in
F0,nP1× P1 by the map f × idP1 is a constructible subset of (P1)n× P1. For

this reason, its euclidean closure G0 in (P1)n × P1 is a hypersurface. As

every component of G̃ dominates U , every component of G0 dominates the
first factor of (P1)n × P1.

We now consider the image G1 of the support of the Garnier divisor
G = G(∇, θn) by

r|C0\K × idP1 : (C0 \K)× P1 → F0,nP1 × P1.

By restriction of r|C0\K × idP1, for each component κ of G we have an

analytic map L : κ → F3,NP1 × P1 ⊂ F0,nP1 × P1 let w be a point of κ
lying over b0 in (C0 \K)× P1. Let g be a local (algebraic) equation for G0

in a Zariski neighborhood W of (r|C0\K × idP1)(w) in F0,nP1 × P1. In a
euclidean neighborhood of w in κ, we have g ◦ L ≡ 0, by our fundamental
observation. By analytic continuation, this holds on the whole of L−1(W )
and G1 is contained in G0.

Again by the fundamental observation, every component of G0∩(F3,NP1×
P1) is met by G1 in a euclidean open subspace. By étaleness of r, we see

that G1 is a closed analytic subspace of G̃0 = G0 ∩ r(C0 \ K), with equal
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dimension. As it meets every of the components of G̃0 in an open set, we
may conclude G1 = G̃0 and G1= G0, which completes the proof.

�

Lemma 4.4.6. Let V → U×P1 be a rank 2 algebraic vector bundle, U being
a quasi-projective manifold. Denote q : U × P1 → U the projection to the
first factor.

Let s : U → U × P1 be a regular section of q and σ0 be a regular section
of P(V )|s(U). Suppose that there exists x ∈ U such that P(V ) is trivializable

in restriction to q−1(x).
Then

(1) There exists a Zariski neighborhood U0 of x in U such that, for any
y ∈ U0, the restriction of P(V ) to q−1(y) is trivializable.

(2) This allows to define a set theoretic section σ of P(V )|U0
, by requiring

that, for every y ∈ U , σ|q−1(y) is constant in any trivialization of
P(V )|q−1(y) and coincides with σ0 over s(U0). This section is actually
regular.

Proof. The assertion (1) is direct application of the openness result of
Maruyama [Mar76], because projectively trivial vector bundles on P1 are
those of type (0, . . . , 0). In (2), the nontrivial part is the regularity of σ.
Without loss of generality, we assume that q−1(U0) does not contain singu-
lar fibers of q. In the proof, we denote Py := P(V )|q−1(y), for every y ∈ U0.

We have a bundle isomorphism Py ' P1 × P1. Let Sy be the set of curves
in Py that map to graphs of constant sections in this isomorphism. Let
S = ∪y∈U0Sy. We will show that the elements of S are the level sets of a
morphism of quasi-projective varieties W → Q, where W is the total space
of P(V )|U0

.
For this purpose, we will use a piece of deformation theory for morphisms

from P1 to algebraic varieties, see [Deb01, chap. 2 and 3].
Let C ∈ S, and choose an embedding f : P1 → W with image C. the

result [Mal83, Prop. 4.1] shows that we can trivialize holomorphically V in
an euclidean neighborhood of any q−1(y), y ∈ U0.

For this reason, the map f satisfies

f∗TW = TP1 ⊕O⊕ dimW−1
P1 .

This implies that [f ] is a smooth point of Mor(P1,W ) and that the irreducible
component M of Mor(P1,W ) passing through [f ] has dimension dimW + 2.

Let
•
M be the Zariski dense subset of M consisting in morphisms g : P1 → W

with

g∗TW = TP1 ⊕O⊕ dimW−1
P1 .

The above Zariski density is again obtained by the openness result of Maruyama.
Let M0 be the closed subset of M of elements g ∈M such that pr◦g = idP1

where pr is the composition of natural maps pr : W
r→ U0 × P1 → P1. We

will also use the notation
•
M0 := M0 ∩

•
M . If f is well chosen, f ∈M0. We

always assume f ∈M0 in the sequel.
Firstly, consider the compositions r ◦ g, [g] ∈ M where r is the bundle

projection W
r→ U0 × P1. As above, the morphism [r ◦ f ] is a smooth point
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of Mor(P1, U0 × P1), and the component through [r ◦ f ] is isomorphic to
m = PSL2(C)× U0, the evaluation map being

PSL2(C)× U0 × P1 −→ U0 × P1

(A, y, z) 7−→ (y,A · z).

By universality, we have a morphism ψ : M → m such that, for any g ∈M ,
ψ([g]) = [r ◦ g]. In particular any of the images g(P1), [g] ∈M0 is contained
in Py, for a certain y ∈ U0 and projects isomorphically onto q−1(y) by r.

Secondly, every element [g] ∈
•
M0 satisfies g(P1) ∈ S. Indeed, by the

previous point g(P1) ⊂ Py, for a certain y ∈ U0, and the normal bundle of
g(P1) in Py is trivial (as any subbundle of a trivial bundle over P1). Under
Py ' P1 × P1, g(P1) is the graph of a morphism P1 → P1. The triviality
of its normal bundle is equivalent to this morphism being constant and, in
turn, to g(P1) ∈ Sy ⊂ S.

Thirdly, the restriction of the evaluation map
•
M0 × P1 → W is domi-

nant: this can be obtained by injectivity of this restriction and the estimate
dimM0 ≥ dimM − 3, thanks to Brouwer’s invariance of domain. The es-
timate comes from the observation that, for an element g ∈ M , the condi-
tion pr ◦ g = idP1 is tantamount to the conjunction of the three identities
pr◦g(0) = 0, pr◦g(1) = 1, pr◦g(∞) =∞. This implies that the composition
•
M0 × P1 →W → U0 is dominant.

Then, for any element [g] ∈
•
M0, with r ◦ g(P1) = q−1(y), [g] is a smooth

point of Mor(P1,W ), but we can also interpret it as a smooth point of
Mor(P1, Py), and by universality, every element of Mor(P1, Py), contained

in the component of [g] can be seen as a point of
•
M . In particular, any

element of Sy has the form g̃(P1), for some [g̃] ∈
•
M0.

Finally, we see that, upon restriction of the initial Zariski neighborhood

U0 of x, we have a bijective morphism
•
M0 × P1 → W , by Zariski’s Main

Theorem, this is an isomorphism and we get a fibration W →
•
M0 with fibers

equal to the elements of S.
The graph of the section σ is the saturation of σ0 by fibers of this fibration,

it is thus a closed Zariski subset of W ; this proves that σ is a regular section
of P(V )|U0×P1 → U0 × P1. The reduction of U0 in the proof is harmless,
because we can apply the above proof with any initial base point x. �

4.4.3. Conclusion. We now explain the relation between Garnier divisor,
Garnier system and isomonodromy. Let ∇t0 be a trace free logarithmic
connection on O⊕2

P1 , with n = N + 3 non-apparent poles given by the coor-

dinates of our base point x = t0 = (t01, . . . , t
0
N , 0, 1,∞). Let T be a simply

connected neighborhood of t0 in F3,NP1 and consider the germ of universal
isomonodromic deformation of ∇t0 restricted to T—formally we are identi-
fying T with a lift in the universal cover of F3,NP1. For T small enough,
this deformation is given by

∇t : Z 7→ dZ −Q(z, t)dz · Z

Let ∇ be the corresponding flat logarithm connection on O⊕2
T×P1 . Up to a

holomorphic gauge transformation, we may suppose the eigendirection δθn
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with eigenvalue θn/2 of the residue of ∇ over z =∞ is given by the constant
section (1, 0) of (O⊕2

T×P1)|T×{∞}.

Let a(z, t), b(z, t), c(z, t) give the entries of Q as follows, Q =
[
b/2 a
−c −b/2

]
.

We suppose that the following condition is fulfilled.

Condition 2. the Garnier divisor G = G(∇t0 , θn) is well defined, shares no
component with the polar locus of ∇ and G|{t0}×P1 is reduced.

Under this condition, up to shrinking T , we have local equations of the
form z = λi(t), i = 1, . . . , N for the components of G in T × P1, with
holomorphic λi : T → P1. In this way, c writes c(z, t) = c0ψ/φ where c0 ∈
C∗, ψ =

∏N
i=1(z−λi(t)) and φ = z(z−1)

∏N
i=1(z−ti). Also, by logarithmicity

a = qa(z, t)/φ(z, t) and b = qb(z, t)/φ(z, t) with qa, qb polynomials in z of
degree ≤ N + 1.

Using a holomorphic gauge transformation given by a matrix
[
λ(t) 0

0 1/λ(t)

]
,

we obtain c0 = 1. In addition, using a second one, given by a matrix of the

form
[

1 g(t)
0 1

]
, we obtain that the 1-form b(z)dz expands with no constant

term at z = ∞. Namely, for ξ = 1/z, in the neighborhood of ξ = 0,

b(z)dz = (−θnξ + o(1))dξ.

Definition 4.4.7. With such c and b, we will say that (∇t) is in normalized
form with respect to θn.

Let H(z, t) :=
[

0 −1/
√
c√

c τ
√
c

]
, where τ = 1

2c(
∂zc
c + b). The transformation

T : Z 7→ H(z, t) · Z is well defined only on a ramified covering of P1 × T ,
but the induced transformation on the level of projectivized connections
is well defined, in particular the transformed connection T∗∇ descends on
P1 × T and is flat. Computation shows that the family T∗∇t is given by

Z̃ 7→
[

0 1
p(z,t) 0

]
dz · Z̃ where

(4) p(z, t) =
3

4

(
∂zc

c

)2

− ∂2
zc

2c
− ∂zb

2
+
b

2

∂zc

c
+
b2

4
− ac.

With the specific forms for a, b, c given above we can see that the equation
∂2
zw = p(·, t)w is Fuchsian for all t ∈ T . Indeed, every term in equation (4)

can be written in the form q
φ2ψ2 for a polynomial q in z of degree ≤ 4N + 2.

These are elementary computations, e.g. for b∂zcc = b∂zψψ − b
∂zφ
φ , each term

satisfies the required property:

b∂zψψ = qbψφ∂zψ
φ2ψ2 ,degz qbψφ∂zψ ≤ (N + 1) +N + (N + 2) + (N − 1) = 4N + 2,

b∂zφφ = qbψ
2∂zφ

φ2ψ2 , degz qbψ
2∂zφ ≤ (N + 1) + 2N + (N + 1) = 4N + 2.

Defining

(5)

{
ψλ(z) :=

∏N
i=1(z − λi) ∈ C[z], λ ∈ CN ,

φt(z) := z(z − 1)
∏N
i=1(z − ti) ∈ C[z], t ∈ CN ,

we have the following.
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Lemma 4.4.8. Let 0,1,(ti)i=1,...,N , (λi)i=1,...,N be 2N + 2 distinct points in

C. The following elements give a basis for the vector space 1
φ2
tψ

2
λ
·C[z]4N+2.

1
z(z−1) ;

(
1

(z−ti)2

)
i=1,...,N+2

;
(

1
(z−λi)2

)
i=1,...,N

;

(
1

z(z−1)(z−λi)

)
i=1,...,N

;
(

1
z(z−1)(z−ti)

)
i=1,...,N

.

Proof. Linear algebra. �

By Lemma 4.4.8, we can rewrite p in the following form, with uniquely
determined coefficients ai, Li, νi.

p(z, t) =
aN+1

z2 +
aN+2

(z−1)2 +
aN+3

z(z−1)

+
N∑
i=1

[
ai

(z−ti)2 + ti(ti−1)Li
z(z−1)(z−ti) + 3

4(z−λi)2 − λi(λi−1)νi
z(z−1)(z−λi)

]
.

(6)

The coefficients ai, i = 1, . . . , N + 2 can be determined from the local expo-
nents θi by residue computations from equation (4),

ai = (θi
2 − 1)/4, i = 1, . . . , N + 2.

Then, computing limz→∞ z
2p in two manners, using expressions (4) and (6),

we find

aN+3 =
1−N

2
−

(
N+2∑
i=1

θ2
i

4

)
+
θn
2

(
θn
2
− 1

)
.

Notice that these expressions allow to recover θn from (ai)i=1,...,n, up to the
involution θn 7→ −θn+2. For abstract (ai)i=1,...,n, we denote θn,1(ai), θn,2(ai)
the two (possibly equal) corresponding θn.

Conversely, starting from p0 in the form (6) with 2N + 2 distinct poles
(ti), (λi), for a given choice of θn ∈ {θn,1(ai), θn,2(ai)}, we can recover the
unique corresponding normalized family (∇t). Indeed, c = ψ/φ being fixed,
there exists a unique b = qb/φ with qb polynomial in z, degz qb ≤ N + 1 with

b(z)dz = (−θn(ai)
ξ +o(1))dξ as above and such that the expression 3

4

(
∂zc
c

)2−
∂2
zc
2c −

∂zb
2 + b

2
∂zc
c has residues νi at z = λi, i = 1, . . . , N . Determination of

this b can be explicitly performed by Lagrange interpolation.
For these determined b and c, there exists a unique a = qa/φ with qa

polynomial in z, degz qa ≤ N +1 such that the corresponding expression (4)
has principal term ai

(z−ti)2 at z = ti. Again notice that, for applications, its

expression could be easily exhibited.
With such choices of a, b, c, by formula (4) we determine an element p

that has the same coefficients as p0 in the basis of Lemma 4.4.8, both must
be equal. The family (∇t) given by these a, b, c will be denoted (∇t(p0, θn)).
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Moreover, fixing t in the expression of p, the pole λi for Z̃ 7→
[

0 1
p(z,t) 0

]
dz·Z̃

is apparent if and only if

(7) Li = Mi

(
N∑
k=1

Mk,iν2
k −Mk,i,0νk −Mk,iUk

)
, i = 1, . . . , N ;

where, for k, i ∈ {1, . . . , N}, using formulae (5) for ψλ and φt,

Mi = − ψλ(ti)
(∂zφt)(ti)

;

Mk,i = φt(λk)
(λk−ti)(∂zψλ)(λk) ;

Mk,i,0 = Mk,i

(
N+2∑

m=1,m 6=i

1
λk−tm −

N∑
m=1,m 6=k

1
λk−λm

)
;

Uk =
aN+3

λk(λk−1) +
N+2∑

m=1,m 6=i

am
(λk−tm)2 +

N∑
m=1,m 6=k

3
4(λk−λm)2 ·

For this equivalence, compare [IKSY91, Prop. 4.3.4].

Theorem 4.4.9. Fix N > 0 and let T be a simply connected neighbor-
hood of t0 in F3,NP1. Fix a family of complex numbers (ai)i=1,...,N+3. Fix
holomorphic maps λi, νi, Li : T → C, i = 1, . . . , N . Define p(z, t) by equa-

tion (6). Consider the family of matrices Pt =
[

0 1
p(z,t) 0

]
. Suppose, for

every t ∈ T , the connection Z 7→ Ptdz · Z has N + 3 distinct non-apparent
poles in z = t1, . . . , tN , 0, 1,∞ and N distinct apparent poles in z = λi(t),
i = 1, . . . , N .

Then (Li) satisfies formulae (7) and the following are equivalent.

(1) There exists a matrix Ω =
∑

Ωi(z, t)dti of meromorphic 1-forms on
T × P1 such that ω := Pdz + Ω satisfies dω = ω ∧ ω.

(2) The functions λi(t), νi(t) are holomorphic and satisfy the Hamilton-
ian system

(8)

{
∂tiλk = ∂νkLi,
∂tiνk = −∂λkLi, k, i = 1, . . . , N ;

The system (8) is called the Garnier system.
On the proof of Theorem 4.4.9 This theorem was first discovered by Garnier
in [Gar12, Troisième Partie]. The Hamiltonian formulation and a more
detailed proof were given by K. Okamoto in [Oka86] and subsequently in
[IKSY91], to which we refer as the most detailed exposition on the topic.

Yet, in the version of Theorem 4.4.9 given in [Oka86] and [IKSY91], our
assumption of non apparence for the poles ti is replaced by the stronger
assumption θi 6∈ Z, i = 1, . . . , n. The only gap in [IKSY91] for a complete
proof of Theorem 4.4.9 is filled by a slight generalization of [IKSY91, Lemma
4.4.2] that we will present in the Appendix. �

Remark 4.4.10. Notice that the first line of (8) allows to derive νk = (∂tiλk+
MiM

k,i,0)/(2MiM
k,i), we can thus eliminate the variable νk from (8) and
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obtain a system of equations for the sole N -tuple (λi(t)). This gives the
original form of the Garnier system.

Remark 4.4.11. Actually, in Theorem 4.4.9, the coefficients of the entries
of Ω (and obviously of P (z, t)) are determined as rational functions of
(ti), (λi(t)) and their derivatives. However, it is not clear that for ev-
ery solution (λi) of the Garnier system, the so determined family (Z 7→
dZ − P (z, t)dz · Z)t has a non-apparent pole at every ti.

Definition 4.4.12. Let (P (z, t))t =
([

0 1
p(z,t) 0

])
t

be a family which satis-

fies condition (1) of Theorem 4.4.9 and denote (λi)i = 1, . . . , N the corre-
sponding solution of the Garnier system. We will say that (λi) governs the
isomonodromic deformation (∇t), for (∇t) = (∇t(p, θn)).

Theorem C. Let (λi) be a solution of a Garnier system governing the
isomonodromic deformation of a rank 2 trace free logarithmic connection
∇t0 on P1 with no apparent pole. The following are equivalent.

(1) The multivalued functions λi are algebraic functions.
(2) The functions λi have finitely many branches.
(3) The conjugacy class [ρ] of the monodromy representation ρ of ∇t0

has finite orbit under MCGnP1.

Proof. The implication 1.⇒ 2. is obvious.
2. ⇒ 3. The finite branching solution (λi) is meromorphic on a finite
branched cover χ : U → F3,NP1, Let b ∈ U be such that χ(b) = t0.

Up to changing the base point t0, we may suppose χ is étale in the neigh-
borhood of t0 and that there exists an (analytic) Zariski neighborhood V of b
in U such that the restriction to V of the function (λ1, . . . , λN , t1, . . . , tN , 0, 1,∞)
is holomorphic and takes values in F3,2NP1. By continuation of the local
isomonodromic family ∇t(p) determined in the neighborhood of b by (λi), we
get a flat connection ∇ on V ×P1 such that ∇|{b}×P1 is isomorphic to ∇t0 (up

to the obvious identification {b}×P1 ' {t0}×P1). Analogously to Corollary
2.4.3, as χ∗π1(U) is a finite index subgroup of π1(F3,NP1) ([Deb01, Lemma
4.19]), the conjugacy class [ρ] has finite orbit under π1(F3,NP1). This gives
the conclusion, because π1(F3,NP1) has index two in π1(F0,nP1).
3. ⇒ 1. It is easily seen, thanks to Theorem 3.1.3 and Lemma 3.2.5, that
any rank two flat connection with no apparent pole has only mild transversal
models. In particular, we may apply Theorem A to ∇t0 and infer that the
isomonodromic deformation of ∇t0 is algebraizable. We conclude by Theo-
rem 4.4.5. �

5. Fields of definition

The implication (1)⇒ (3) of Theorem A can be interpreted as a method
to construct some logarithmic connections on ruled varieties. One of the sim-
plest invariants we can retain from such a connection is the set of fields of def-
inition of its projective monodromy group. Proposition 5.0.2 and Corollary
5.0.3 below should be helpful to understand these fields in our construction.

Definition 5.0.1. Let k be a field. Let ρ : Γ → PGLm(k) be a group
morphism and f be a subfield of k. Let Gf be the image of the sub-
group GLm(f) < GLm(k) by P : GLm(k) → PGLm(k). If there exists
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C ∈ PGLm(k) such that, Cρ(Γ)C−1 < Gf , we say that f is a field of defini-
tion for ρ.

Proposition 5.0.2. Let Γ = N o Q be a semidirect product. Let k be an
algebraically closed field and let f be a subfield of k. Suppose we have a
morphism ρ : Γ→ GLm(k) such that the restriction ρ|N to N is irreducible
and f is a field of definition for Pρ|N .

If there exists a generating set S ⊂ N for N such that, for every α ∈ S,
ρ(α) has nontrivial trace, then f is a field of definition for Pρ.

Proof. After conjugation, we may suppose Pρ|N takes values in Gf . Fix
β ∈ Q.

For α ∈ S, Let Mα be an element of GLm(f) with PMα = Pρ(α). Let
Qα be an element of GLm(f) with PQα = Pρ(β−1αβ) and trace(Qα) =
trace(Mα). By Lemma 2.3.1, the element Pρ(β) is characterized by the
system of equations

Pρ|N (β−1αβ) = Pρ(β)−1Pρ|N (α)Pρ(β), α ∈ S.

The matrices Mα having nontrivial trace, this implies that the solutions
M ∈ Matm(k) of the system

MQα = MαM, α ∈ S

are exactly the matrices of the form M = λρ(β), λ ∈ k.
This system can be interpreted as a homogeneous linear system in the

entries of M , with coefficients in f . Therefore, the existence of the nontrivial
solution ρ(β) ensures the existence of a nontrivial solution with coefficients
in f , a solution M ∈ GLm(f). This implies Pρ(β) ∈ Gf . �

Corollary 5.0.3. Let Γ = N oQ be a semidirect product, with N finitely
generated. Let k be an algebraically closed field and let f be a subfield of k.
Let ρ : Γ → GLm(k) be a morphism such that the restriction ρ|N to N has
Zariski dense image in GLm(k) and f is a field of definition for Pρ|N .

The field f is a field of definition for Pρ.

Proof. First, Zariski density of ρ|N implies its irreducibility. We want to
exhibit a generating set S for N which satisfies the hypothesis of Proposition
5.0.2.

Let S0 be a finite generating set for N . The subset

U := {M ∈ GLm(k)|∀α ∈ S0, trace(M−1ρ(α)) 6= 0 and trace(M) 6= 0}

is a Zariski open subset of GLm(k). By density, it must contain an element
ρ(α0), with α0 ∈ N . The generating set S := {α0}∪{α−1

0 α, α ∈ S0} satisfies
the hypothesis of Proposition 5.0.2. �

Appendix

We want to explain here the generalization of Lemma 4.4.2 of [IKSY91]
we need to obtain Theorem 4.4.9 with our slightly weakened hypotheses.
The generalized lemma is as follows. In the sequel we use the terminology
of [IKSY91], beware that the wording “logarithmic pole” refers to the form
of the local solution of the considered Fuchsian scalar equation.
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Lemma A1. Take an integrable system

dY =
([

0 1
p(z,t) 0

]
dz + Ω

)
· Y

where Ω =
N∑
i=1

Ωi(z, t)dti and p is given by equation (6). Suppose z 7→ p(z, t0)

has exactly 2N + 2 poles in C (without multiplicity) and the monodromy of
the system around any of the N+3 poles z = 0, 1,∞ and z = ti, i = 1, . . . , N
is not scalar (non-apparent poles). Then the (1, 2) entry Ai of Ωi satisfies
the following.

The rational function z 7→ Ai(z, t
0)

(1) is holomorphic outside λ1, . . . , λN ,∞,
(2) has only simple poles in C ∪ {∞} and
(3) has zeroes in the points 0, 1 and t0j , for 1 ≤ j ≤ N , j 6= i.

Proof. The proof is given in [IKSY91] with the hypothesis that none of
the poles z = 0, 1,∞, t1, . . . , tN has integer local exponent θ. It is obtained
through local studies in the points z = 0, 1,∞, ti, λi(t) involving local solu-

tions of d2y
dz2 = p(z, t)y given by Frobenius’s method.

To complete the proof, we only need to do the analogous study at those
elements of {0, 1,∞, t1, . . . , tN} that are logarithmic poles.

Suppose z = tj is a logarithmic pole of d
2y
dz2 = p(z, t)y, with tj 6= ti, tj 6=∞.

By the arguments of [IKSY91], equation 4.4.5 p. 185, we know

Ai(z, t) = u(t)g(z, t) + a(t)v2
1 + b(t)v1v2 + c(t)v2

2(9)

for

• v1(z, t), v2(z, t) any fundamental system of solutions of d
2y
dz2 = p(z, t)y

near z = tj,

• g(z, t) := v1
∂
∂ti
v2 − v2

∂
∂ti
v1

• u(t), a(t), b(t), c(t) holomorphic functions of t, with u nowhere van-
ishing.

By Frobenius’s method (with parameter) we may take

• v1 = (z − tj)
1
2h1(z, t),

v2 = (z − tj)
1
2 (h1(z, t) log(z − tj) + h2(z, t)), if θj = 0;

• v1 = (z − tj)
1+m

2 h1(z, t),

v2 = (z − tj)
1−m

2 h1(z, t) + k(t)(v1 log(z − tj) + (z − tj)
1−m

2 h3(z, t)),
if |θj | = m > 0.

Where the functions h1, h2, h3 are holomorphic in the neighborhood of z = tj,
h1 does not vanish and k(t) is a nowhere vanishing holomorphic function of
t.

In any case, the right hand side of (9) takes the form

2∑
`=0

k`(z, t) (log(z − tj))` ,

with k`(z, t) holomorphic in the neighborhood of z = tj. The lemma below
and uniformity of Ai allow to conclude k2 = k1 = 0. In any case, the
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specific form of k0 and the conditions given by k2 = k1 = 0 allow to see
k0(z, t) vanishes at z = tj.

The same arguments allow to prove holomorphicity of Ai at ti, in case it

is a logarithmic pole. If ∞ is a logarithmic pole of d2y
dz2 = p(z, t)y, it remains

to see that Ai has at most a pole of order one at this point. The proof is
almost as above, the only difference is a slight change in the form of the local
fundamental system of solutions. �

Lemma A2. Let (k`(z))0≤`≤r be holomorphic functions in the punctured
disc D∗ := {z ∈ C∗, |z| < 1}. Consider the function

f(z) =

r∑
`=0

k`(z) (log z)`

defined on the universal cover of D∗. If f is uniform then k` ≡ 0, ` > 0.

Proof. We proceed by induction on r. The result is trivial for r = 0. Take
r > 0 and suppose the lemma is true for r−1. The monodromy group of log z
is generated by log z 7→ log z + 2iπ. Hence, f is uniform if and only if the

function g(z) = f(z)−
∑r

`=0 k`(z) (log z + 2iπ)` is zero. This function g(z) is

obviously uniform and can be written in the form g(z) =
∑r−1

`=0 q`(z) (log z)`

with q` holomorphic in D∗. By the induction hypothesis 2iπrkr = qr−1 ≡ 0.
Again by the induction hypothesis, k` ≡ 0 for ` = 1, . . . , r − 1.

�
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Yoshida, From Gauss to Painlevé, Aspects of Mathematics, E16, Friedr.
Vieweg & Sohn, Braunschweig, 1991, A modern theory of special functions.
MR 1118604 (92j:33001)

[Iwa02] Katsunori Iwasaki, A modular group action on cubic surfaces and the mon-
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