UNIVERSITÉ D'ANGERS ANNÉE 2016-2017 L1 SVG

Outils mathématiques pour la biologie

Devoir Maison 2, corrigé rapide

EXERCICE I

Donner l'ensemble des solutions des équations différentielles linéaires du premier ordre suivantes.

D'après le cours (variation de la constante), les solutions d'une Acquation y'(x) + a(x)y(x) = b(x) sont les fonctions de la forme

$$y(x) = e^{-A(x)}(K + \int e^{A(x)}b(x)),$$

avec $K \in \mathbb{R}$ une constante et A un primitive de a.

1.
$$y'(x) + 2y(x) = 4$$
,
 $a(x) = 2, b(x) = 4$; $A(x) = 2x$,

$$y(x) = e^{-2x}(K + \int 4e^{2x}) = e^{-2x}(K + 2e^{2x}) = Ke^{-2x} + 2,$$

avec $K \in \mathbb{R}$ une constante.

2.
$$y'(x) + 3xy(x) = 2$$
,
 $a(x) = 3x, b(x) = 0$; $A(x) = \frac{3}{2}x^2$,

$$y(x) = e^{-\frac{3}{2}x^2}(K + \int 0) = Ke^{-\frac{3}{2}x^2},$$

avec $K \in \mathbb{R}$ une constante.

3. y'(x) + 5y(x) = x, pour cette question, on pourra utiliser une intégration par parties. a(x) = 5, b(x) = x; A(x) = 5x,

$$y(x) = e^{-5x}(K + \int xe^{5x})$$

Par intégration par partie, avec $u'(x) = e^{5x}$, v(x) = x; $u(x) = \frac{1}{5}e^{5x}$, v'(x) = 1, on obtient

$$\int xe^{5x} = \frac{1}{5}xe^{5x} - \int \frac{1}{5}e^{5x} = \frac{1}{5}xe^{5x} - \frac{1}{25}e^{5x} = e^{5x}(\frac{1}{5}x - \frac{1}{25})$$

Finalement, la solution générale est

$$y(x) = e^{-5x} \left(K + e^{5x} \left(\frac{1}{5}x - \frac{1}{25} \right) \right) = Ke^{-5x} + \frac{1}{5}x - \frac{1}{25},$$

pour $K \in \mathbb{R}$.

EXERCICE II

On considère l'équation différentielle linéaire du second ordre suivante.

$$y''(x) - y(x) = 5\cos(2x) \tag{1}$$

1. Donner l'équation homogène associée, puis décrire l'ensemble de ses solutions. L'équation homogène associée est

$$y''(x) - y(x) = 0.$$

L'équation caractéristique est $x^2 - 1 = 0$, ce qui revient à (x - 1)(x + 1) = 0. On a donc deux solutions réelles pour cette dernière : $r_1 = 1$ et $r_2 = -1$. d'après le cours les solutions de l'équation homogène sont les fonctions de la forme

$$y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x} = c_1 e^x + c_2 e^{-x},$$

où c_1 et c_2 sont deux constantes réelles quelconques.

2. Donner une constante $k \in \mathbb{R}$ telle que la fonction y_p définie par $y_p(x) = k\cos(2x)$ soit solution de l'équation (1).

La fonction y_p est solution de (1) si et seulement si $y_p''(x) - y_p(x) = 5\cos(2x)$, c'est à dire $-4k\cos(2x) - k\cos(2x) = 5\cos(2x)$, ou encore $-5k\cos(2x) = 5\cos(2x)$. Cette condition est satisfaite pour k = -1.

3. Décrire l'ensemble des solutions de l'équation (1).

D'après le cours, les solutions de (1) sont les fonctions qui s'écrivent comme somme de y_p et d'une solution du système homogène. Ce sont donc les fonctions de la forme

$$x \mapsto -\cos(2x) + c_1 e^x + c_2 e^{-x},$$

où c_1 et c_2 sont deux constantes réelles quelconques.

EXERCICE III

On considère l'équation différentielle linéaire du second ordre suivante.

$$y''(x) - 2y'(x) + y(x) = e^x$$
 (2)

1. Donner l'équation homogène associée, puis décrire l'ensemble de ses solutions. L'équation homogène associée est

$$y''(x) - 2y'(x) + y(x) = 0.$$

L'équation caractéristique est $x^2-2x+1=0$, ce qui revient à $(x-1)^2=0$. On a donc une seule solution réelle ("double") pour cette dernière: r=1. D'après le cours les solutions de l'équation homogène sont les fonctions de la forme

$$y(x) = c_1 e^{rx} + c_2 x e^{rx} = c_1 e^x + c_2 x e^x,$$

où c_1 et c_2 sont deux constantes réelles quelconques.

2. Donner une constante $k \in \mathbb{R}$ telle que la fonction y_p définie par $y_p(x) = kx^2e^x$ soit solution de l'équation (2).

La fonction y_p est solution de (2) si et seulement si $y_p''(x) - 2y_p'(x) + y_p(x) = e^x$, c'est à dire

$$k(2e^{x} + 4xe^{x} + x^{2}e^{x}) - 2k(2xe^{x} + x^{2}e^{x}) + kx^{2}e^{x} = e^{x}$$

- , En simplifiant par e^x et en réduisant, on voit que cela revient à 2k=1 c'est à dire $k=\frac{1}{2}$.
- 3. Décrire l'ensemble des solutions de l'équation (2).

D'après le cours, les solutions de (2) sont les fonctions qui s'écrivent comme somme de y_p et d'une solution du système homogène. Ce sont donc les fonctions de la forme

$$x \mapsto \frac{x^2}{2}e^x + c_1e^x + c_2xe^x,$$

où c_1 et c_2 sont deux constantes réelles quelconques.