- **Exercice 1.** 1. Soient $H = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0\}$ et $G = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 1\}$. Montrer qu'il existe $\tau \in \mathbb{R}^3$ tel que $G = H + \tau := \{p + \tau | p \in H\}$.
 - 2. On généralise ce qu'on vient de faire. Soit f une forme linéaire nonnulle sur \mathbb{R}^n . Soient $H = \{p \in \mathbb{R}^n | f(p) = 0\}$ et $G = \{p \in \mathbb{R}^n | f(p) = a\}$, montrer qu'il existe $\tau \in \mathbb{R}^n$ tel que $G = H + \tau$. Discuter, en fonction de a, l'intersection de G et H.

Exercice 2. On se place dans l'espace affine \mathbb{R}^2 . Soient A = (1,2), B = (4,5), C = (2,1), D = (0,0) et E = (7,9).

- 1. Donner les coordonnées de A et B dans le repère $(D; \overrightarrow{DC}, \overrightarrow{DE})$, puis dans le repère $(E; \overrightarrow{ED}, \overrightarrow{EC})$.
- 2. Donner les coordonnées de C et D dans le repère $(A; \overrightarrow{AC}, \overrightarrow{AB})$, puis dans le repère $(B; \overrightarrow{BA}, \overrightarrow{BE})$.

Exercice 3. Soient H et G deux plans vectoriels distincts de \mathbb{R}^3 .

- 1. Décrire l'intersection Δ de H et G.
- 2. Montrer $H + G = \mathbb{R}^3$.
- 3. Soit $\tau \in \mathbb{R}^3$, montrer que $H \cap (G + \tau)$ est l'image de Δ par une translation.
- 4. Soit $\sigma \in \mathbb{R}^3$, montrer que $(H + \sigma) \cap (G + \tau)$ est l'image de Δ par une translation.
- 5. Quel est le lien entre cet exercice et l'Exercice 1?

Exercice 4. On se donne les deux repères cartésiens $\mathcal{R} = ((0,0); ((1,0),(0,1)))$ et $\mathcal{R}' = ((0,1); ((1,1),(-1,1)))$ de \mathbf{R}^2 . Calculer une équation cartésienne dans \mathcal{R}' de la droite affine d'équation 2x - y + 3 = 0 dans \mathcal{R} .

Exercice 5. On suppose que \mathbb{R}^3 est muni du repère cartésien usuel, dans lequel seront exprimés les hypothèses et solutions de cet exercice. Soit \mathcal{D} la droite affine de \mathbb{R}^3 définie par :

$$\begin{cases} x = 1 + \lambda \\ y = 2 - \lambda \\ z = -1 + \lambda \end{cases}$$

Donner un point et un vecteur directeur de \mathcal{D} . Donner un système d'équations cartésiennes définissant \mathcal{D} dans \mathbb{R}^3 .

Exercice 6. On suppose que \mathbb{R}^3 est muni du repère cartésien usuel, dans lequel seront exprimés les hypothèses et solutions de cet exercice. Soit $f \colon \mathbb{R}^3 \to \mathbb{R}^3$ qui a un point m de coordoonnées (x, y, z) associe le point f(m) de coordonnées (x', y', z') telles que :

$$\begin{cases} x' = 1 + x + 2y + z \\ y' = 2 + y - z \\ z' = -1 + x + 3z \end{cases}$$

- 1. Donner l'image par f de l'origine du repère. Donner dans la base canonique la matrice de la partie linéaire L(f) de f. Calculer le noyau et son image de L(f) en en précisant les dimensions.
- 2. Quelle est l'image par f du plan affine d'équation cartésienne 2x + y z + 1 = 0?
- 3. Quelle est l'image par f du plan affine d'équation cartésienne x+y+2z-1=0?

Exercice 7. On suppose que \mathbb{R}^2 est muni du repère cartésien usuel, dans lequel seront exprimés les hypothèses et solutions de cet exercice. Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ qui a un point m de coordoonnées (x, y, z) associe le point f(m) de coordonnées (x', y', z') telles que :

$$\begin{cases} x' = 3 + 3x + 2y \\ y' = 2 - 2x + y \end{cases}$$

- 1. Donner l'image par f de l'origine du repère. Donner dans la base canonique la matrice de la partie linéaire L(f) de f. Calculer le noyau et son image de L(f) en en précisant les dimensions.
- 2. Quelle est l'image par f de la droite affine d'équation cartésienne 5x + y + 1 = 0?
- 3. Quelle est l'image par f de la droite affine d'équation cartésienne 7x + 2y 2 = 0?